
Classical Object-Oriented
Programming with ECMAScript

Mike Gerwitz

May 2012

Abstract

ECMAScript (more popularly known by the name “Java-
Script”) is the language of the web. In the decades past,
it has been used to augment web pages with trivial fea-
tures and obnoxious gimmicks. Today, the language is
used to write full-featured web applications that rival mod-
ern desktop software in nearly every regard and has even
expanded to create desktop and server software. With
increased usage, there is a desire to apply more familiar
development paradigms while continuing to take advan-
tage of the language’s incredibly flexible functional and
prototypal models. Of all of the modern paradigms, one
of the most influential and widely adopted is the Clas-
sical Object-Oriented paradigm, as represented in lan-
guages such as Java, C++, Python, Perl, PHP and others.
ECMAScript, as an object-oriented language, contains
many features familiar to Classical OO developers. How-
ever, certain features remain elusive. This paper will detail
the development of a classical object-oriented framework
for ECMAScript — ease.js — which aims to address these
issues by augmenting ECMAScript’s prototype model to
allow the creation of familiar class-like objects. This im-
plementation enforces encapsulation and provides features
that most Classical OO developers take for granted until
the time that ECMAScript implements these features it-
self.1

Contents

1 Class-Like Objects in ECMAScript 1
1.1 Prototypes 2
1.2 Privileged Members 3
1.3 Subtypes and Polymorphism 3

1.3.1 Extensible Constructors 5
1.4 Shortcomings 6

2 Hacking Around Prototypal Limitations 6
2.1 Extensible Constructors: Revisited 6
2.2 Encapsulating Data 7

2.2.1 A Naive Implementation 7
2.2.2 A Proper Implementation 9
2.2.3 Private Methods 10

2.3 Protected Members 11
2.3.1 Protected Member Encapsulation

Challenges 14

1There was discussion of including classes in ECMAScript 6 “Har-
mony”, however it is not within the specification at the time of writ-
ing. At that time, the framework could be used to transition to
ECMAScript’s model, should the developer choose to do so.

3 Encapsulating the Hacks 14
3.1 Constructor/Prototype Factory 15

3.1.1 Factory Conveniences 17
3.2 Private Member Encapsulation 18

3.2.1 Wrapper Implementation Concerns . 21

4 Licenses 23
4.1 Document License 23
4.2 Code Listing License 23

4.2.1 Code Listing License Exceptions . . 23
4.3 Reference Licenses 23

5 Author’s Note 23

1 Class-Like Objects in ECMA-
Script

JavaScript is a multi-paradigm scripting language stan-
dardized by ECMAScript, incorporating object-oriented,
functional and imperative styles. The Object-Oriented
paradigm in itself supports two sub-paradigms - proto-
typal and classical, the latter of which is popular in lan-
guages such as Java, C++, Python, Perl, Ruby, Lisp, PHP,
Smalltalk, among many others. ECMAScript itself is pro-
totypal.

The creation of objects in ECMAScript can be as simple
as using an object literal, as defined by curly braces:

var obj = { foo: "bar" };

In a classical sense, object literals can be thought of as
anonymous singletons; [2] that is, they have no name (they
are identified by the variable to which they are assigned)
and only one instance of the literal will exist throughout
the life of the software.2 For example, calling a function
that returns the same object literal will return a distinct,
entirely unrelated object for each invocation:

function createObj()

{

return { name: "foo" };

}

createObj() !== createObj();

Using this method, we can create basic objects that act
much like class instances, as demonstrated in Listing 1:

1 var obj = {

2 name: "Foo",

3
4 setName: function(val)

5 {

6 obj.name = val;

2Technically, one could set the prototype of a constructor to be
the object defined by the literal (see Listing 2), however the result-
ing instances would be prototypes, not instances of a common class
shared by the literal and each subsequent instance.

1

7 },

8
9 getName: function()

10 {

11 return obj.name;

12 }

13 };

14
15 obj.getName(); // "Foo"

16 obj.setName("Bar");

17 obj.getName(); // "Bar"

Listing 1: A “singleton” with properties and methods

1.1 Prototypes

We could re-use obj in Listing 1 as a prototype, allowing
instances to inherit its members. For example:

18 function Foo() {}

19 Foo.prototype = obj;

20
21 var inst1 = new Foo(),

22 inst2 = new Foo();

23
24 inst2.setName("Bar");

25
26 inst1.getName(); // "Bar"

27 inst2.getName(); // "Bar"

Listing 2: Re-using objects as prototyes (bad)

In Listing 2 above, we define Foo to be a constructor3

with our previous object obj as its prototype. Unfortu-
nately, as shown in Listing 1, name is being set on obj it-
self, which is a prototype shared between both instances.
Setting the name on one object therefore changes the name
on the other (and, indeed, all instances of Foo). To il-
lustrate this important concept, consider Listing 3 below,
which continues from Listing 2:

28 obj.foo = "bar";

29 inst1.foo; // "bar"

30 inst2.foo; // "bar"

Listing 3: The effect of prototypes on instances

Clearly, this is not how one would expect class-like ob-
jects to interact; each object is expected to have its own
state. When accessing a property of an object, the mem-
bers of the object itself are first checked. If the member
is not defined on the object itself,4 then the prototype
chain is traversed. Therefore, we can give objects their

3A “constructor” in ECMAScript is simply any function intended
to be invoked, often (but not always) with the new operator, that
returns a new object whose members are derived from the function’s
prototype property.

4Note that “not defined” does not imply undefined ; undefined is
a value.

own individual state by defining the property on the indi-
vidual instances, rather than the prototype, as shown in
Listing 4.5

31 inst1.foo = "baz";

32 inst1.foo; // "baz"

33 inst2.foo; // "bar"

34
35 delete inst1.foo;

36 inst1.foo; // "bar"

Listing 4: Setting properties per-instance

This does not entirely solve our problem. As shown in
Listing 1, our obj prototype’s methods (getName() and
setName()) reference obj.name - our prototype. Listing 5
demonstrates the problem this causes when attempting to
give each instance its own state in regards to the name

property:

37 // ...

38
39 inst1.name = "My Name";

40 inst1.getName(); // "Foo"

Listing 5: Referencing prototype values in obj causes
problems with per-instance data

ECMAScript solves this issue with the this keyword.
When a method6 of an instance’s prototype is invoked,
this is bound, by default,7 to a reference of that instance.
Therefore, we can replace obj in Listing 1 with the proto-
type definition in Listing 6 to solve the issue demonstrated
in Listing 5:

1 function Foo(name)

2 {

3 this.name = name;

4 };

5
6 Foo.prototype = {

7 setName = function(name)

8 {

9 this.name = name;

10 },

11
12 getName = function()

13 {

14 return this.name;

15 }

16 };

17

5Also demonstrated in Listing 4 is the effect of the delete key-
word, which removes a member from an object, allowing the values
of the prototype to “peek through“ as if a hole exists in the object.
Setting the value to undefined will not have the same effect, as it
does not produce the “hole”; the property would return undefined

rather than the value on the prototype.
6A method is simply an invokable property of an object (a func-

tion).
7One can override this default behavior with Function.call() or

Function.apply().

2

18 var inst = new Foo("Bar");

19 inst.name; // "Bar"

20 inst.getName(); // "Bar"

21
22 inst.setName("Baz");

23 inst.getName(); // "Baz"

24
25 inst.name = "Foo";

26 inst.getName(); // "Foo"

Listing 6: Re-using objects as prototypes (good)

Listing 6 shows that this is also bound to the new in-
stance from within the constructor; this allows us to ini-
tialize any properties on the new instance before it is re-
turned to the caller.8 Evaluation of the example yields
an additional concern — the observation that all object
members in ECMAScript are public.9 Even though the
name property was initialized within the constructor, it
is still accessible outside of both the constructor and the
prototype. Addressing this concern will prove to be an
arduous process that will be covered at great length in the
following sections. For the time being, we will continue
discussion of conventional techniques, bringing us to the
concept of privileged members.

1.2 Privileged Members

The concept of encapsulation is a cornerstone of classical
object-oriented programming. Unfortunately, as Listing 6
demonstrates, it becomes difficult to encapsulate data if
all members of a given object are accessible publicly. One
means of addressing this issue is to take advantage of the
fact that functions introduce scope, allowing us to de-
fine a local variable (or use an argument) within the con-
structor that is only accessible to the privileged member
getName().

1 function Foo(name)

2 {

3 this.getName = function()

4 {

5 return name;

6 };

7
8 this.setName = function(newname)

9 {

10 name = newname;

11 };

12 }

Listing 7: Using privileged members to encapsulate data

8It is worth mentioning that one can explicitly return an object
from the constructor, which will be returned in place of a new in-
stance.

9That is not to say that encapsulation is not possible; this state-
ment is merely emphasizing that properties of objects do not support
access modifiers. We will get into the topic of encapsulation a bit
later.

Heap Usage Inst. Time Call Time
Listing 6 49.7M 234ms 17ms
Listing 7 236.0M 1134ms 28ms

% Change 374.8% 384.6% 64.7%

Figure 1: Comparing performance of privileged member and
prototype implementations under v8. The heap usage column
represents the heap usage after instantiating Foo under the re-
spective implementation n times, and the Inst. CPU column
reflects the amount of time spent instantiating the n objects.
The Call CPU column reflects the amount of time spent in-
voking each member of one instance n times. n = 1, 000, 000.
Lower numbers are better. Different environments may have
different results.

If name in Listing 7 is encapsulated within the con-
structor, our methods that access that encapsulated data
must too be declared within the constructor;10 otherwise,
if placed within the prototype, name would be out of scope.
This implementation has an unfortunate consequence —
our methods are now being redeclared each and every time
a new instance of Foo is created, which has obvious per-
formance penalties (see Figure 1).11

Due to these performance concerns, it is often unde-
sirable to use privileged members; many developers will
instead prefix, with an underscore, members intended to
be private (e.g. this. name) while keeping all methods on
the prototype.12 This serves as a clear indicator that the
API is not public, is subject to change in the future and
should not be touched. It also allows the property to be
accessed by subtypes,13 acting like a protected member.
Unfortunately, this does not encapsulate the data, so the
developer must trust that the user will not tamper with
it.

1.3 Subtypes and Polymorphism

In classical terms, subtyping (also known as subclassing)
is the act of extending a supertype (creating a child class
from a parent) with additional functionality. The subtype
is said to inherit its members from the supertype.14 Based
on our prior examples in section 1.1, one could clearly see
how the prototype of any constructor could be replaced
with an instance of another constructor, indefinitely, to
achieve an inheritance-like effect. This useful consequence
of the prototype model is demonstrated in Listing 8.15

10One may mix prototypes and privileged members.
11As a general rule of thumb, one should only use privileged mem-

bers for methods that access encapsulated data; all other members
should be part of the prototype.

12One example of a library that uses underscores in place of priv-
ileged members is Dojo at http://dojotoolkit.org.

13The term “subtype” is not truly the correct term here. Rather,
the term in this context was meant to imply that an instance of
the constructor was used as the prototype for another constructor,
acting much like a subtype (child class).

14In the case of languages that support access modifiers, only pub-
lic and protected members are inherited.

15Unfortunately, a responsible implementation is not all so elegant
in practice.

3

1 var SubFoo = function(name)

2 {

3 // call parent constructor

4 Foo.call(this, name);

5 };

6 SubFoo.prototype = new Foo();

7 SubFoo.prototype.constructor = SubFoo;

8
9 // build upon (extend) Foo

10 SubFoo.prototype.hello = function()

11 {

12 return "Hello, " + this.name;

13 };

14
15 var inst = new SubFoo("John");

16 inst.getName(); // "John"

17 inst.hello(); // "Hello, John"

Listing 8: Extending prototypes (creating subtypes) in
ECMAScript

Consider the implications of Listing 8 with a close eye.
This extension of Foo is rather verbose. The first (and
rather unpleasant fact that may be terribly confusing to
those fairly inexperienced with ECMAScript) considera-
tion to be made is SubFoo’s constructor. Note how the
supertype (Foo) must be invoked within the context of
SubFoo 16 in order to initialize the variables.17 However,
once properly deciphered, this call is very similar to invo-
cation of parent constructors in other languages.

Following the definition of SubFoo is its prototype (line
6). Note from section 1.1 that the prototype must contain
the members that are to be accessible to any instances
of the constructor. If we were to simply assign Foo to
the prototype, this would have two terrible consequences,
the second of which will be discussed shortly. The first
consequence would be that all members of Foo itself would
be made available to instances of SubFoo. In particular,
you would find that (new SubFoo()).prototype ===

Foo.prototype, which is hardly your intent. As such, we
must use a new instance of Foo for our prototype, so that
the prototype contains the appropriate members.

We follow the prototype assignment with
another alien declaration — the setting of
SubFoo.prototype.constructor on line 7. To un-
derstand why this is necessary, one must first un-
derstand that, given any object o such that var

o = new O(), o.constructor === O.18 Recall from
section 1.1 that values “peek through holes” in the
prototype chain. In this case, without our interven-
tion, SubFoo.prototype.constructor === Foo because

16If Function.call() or Function.apply() are not properly used,
the function will, depending on the environment, assign this to the
global scope, which is absolutely not what one wants. In strict mode,
this effect is mitigated, but the result is still not what we want.

17If the constructor accepts more than a few arguments, one could
simply do: Foo.apply(this, arguments);

18One could apply this same concept to other core ECMA-
Script objects. For example, (function() {}).constructor
=== Function, [].constructor === Array, {}.constructor ===

Object, true.constructor === Boolean and sofourth.

SubFoo.prototype = new Foo(). The constructor

property is useful for reflection, so it is important that we
properly set this value to the appropriate constructor —
SubFoo. Since SubFoo.prototype is an instance of Foo

rather than Foo itself, the assignment will not directly
affect Foo. This brings us to our aforementioned second
consequence of assigning SubFoo.prototype to a new
instance of Foo — extending the prototype by adding to
or altering existing values would otherwise change the
supertype’s constructor, which would be an unintentional
side-effect that could have drastic consequences on the
software.

As an example of extending the prototype (we have
already demonstrated overwriting the constructor and
this concept can be applied to overriding any members
of the supertype), method hello() has been included in
Listing 8 on line 10. Note that this will be bound to
the instance that the method is being invoked upon, since
it is referenced within the prototype. Also note that we
are assigning the function in a slightly different manner
than in Listing 6; this is necessary to ensure that we do
not overwrite the prototype we just declared. Any addi-
tional members must be declared explicitly in this manner,
which has the negative consequence of further increasing
the verbosity of the code.

An instance of a subtype can be used in place of any
of its supertypes in a concept known as polymorphism.
Listing 9 demonstrates this concept with getFooName(),
a function that will return the name of any object of type
Foo.19

1 function getFooName(foo)

2 {

3 if (!(foo instanceof Foo))

4 {

5 throw TypeError(

6 "Expected instance of Foo"

7);

8 }

9
10 return foo.getName();

11 }

12
13 var inst_parent = new Foo("Parent"),

14 inst_child = new SubFoo("Child");

15
16 getFooName(inst_parent); // "Parent"

17 getFooName(inst_child); // "Child"

18 getFooName({}); // throws TypeError

Listing 9: Polymorphism in ECMAScript

The concepts demonstrated in this section could
be easily used to extend prototypes indefinitely, cre-
ating what is called a prototype chain. In the
case of an instance of SubFoo, the prototype chain

19Please note that the typeof operator is not appropriate in this
situation, as both instances of Foo and SubFoo would be considered
typeof “object”. The instanceof operator is appropriate when de-
termining types of objects in terms of their constructor.

4

of most environments would likely be: SubFoo,
Foo, Object (that is, Object.getPrototypeOf(new

SubFoo()) === SubFoo, and so fourth).20 Keep in mind,
however, that the further down the prototype chain the en-
gine must traverse in order to find a given member, the
greater the performance impact.

Due to the method used to “extend” prototypes, it
should also be apparent that multiple inheritance is un-
supported by ECMAScript, as each each constructor may
only have one prototype property.21

1.3.1 Extensible Constructors

Before moving on from the topic of extending prototypes,
the assignment of SubFoo.prototype deserves some ad-
ditional discussion. Consider the implications of this as-
signment; particularity, the invocation of the constructor
Foo. ECMAScript does not perform assignments to pro-
totypes differently than any other assignment, meaning
all the logic contained within the constructor Foo will be
executed. In our case, this does not have any terrible con-
sequences — name will simply be initialized to undefined,
which will be overridden once SubType is invoked. How-
ever, consider what may happen if Foo performed checks
on its arguments.

1 function Foo(name)

2 {

3 if (typeof name !== ’string’)

4 {

5 throw TypeError("Invalid name");

6 }

7
8 this.name = name;

9 }

10
11 // ...

12 SubFoo.prototype = new Foo(); // TypeError

Listing 10: Potential constructor problems for prototype
assignments

As Listing 10 shows, we can no longer use a new instance
of Foo as our prototype, unless we were to provide dummy
data that will pass any type checks and validations that
the constructor performs. Dummy data is not an ideal so-
lution — it muddies the code and will cause subtypes to
break should any validations be added to the supertype in
the future.22 Furthermore, all constructor logic will still

20ECMAScript 5 introduces Object.getPrototypeOf(), which al-
lows retrieving the prototype of an object (instance). Some environ-
ments also support the non-standard proto property, which is a
JavaScript extension.

21Multiple inheritance is well-known for its problems. As an al-
ternative, styles of programming similar to the use of interfaces and
traits/mixins in other languages are recommended and are possible
in ECMAScript.

22Of course, if the constructor of the supertype changes, there are
always BC (backwards-compatibility) concerns. However, in the case
of validations in the constructor, they may simply enforce already
existing docblocks, which should have already been adhered to.

be performed. What if Foo were to do something consider-
ably more intensive — perform vigorous data validations
or initialize a database connection, perhaps?23 Not only
would we have to provide potentially complicated dummy
data or dummy/stubbed objects, our prototype assign-
ment would also incur an unnecessary performance hit.
Indeed, the construction logic would be performed n + 1
times — once for the prototype and once for each instance,
which would overwrite the results of the previous construc-
tor (or duplicate, depending on implementation).

How one goes about solving this problem depends on
the needs of the constructor. Let us first consider a very
basic solution — ignoring constructor logic if the provided
argument list is empty, as is demonstrated in Listing 11.

1 function Foo(name)

2 {

3 if (arguments.length === 0)

4 {

5 return;

6 }

7
8 // ...

9
10 this.name = name;

11 }

12
13 // ...

14 SubType.prototype = new Foo(); // OK

Listing 11: Ignoring construction logic if provided with
an empty argument list

This solution has its own problems. The most apparent
issue is that one could simply omit all constructor argu-
ments to bypass constructor logic, which is certainly un-
desirable.24 Secondly — what if Foo’s name parameter
was optional and additional construction logic needed to
be performed regardless of whether or not name was pro-
vided? Perhaps we would want to provide a default value
for name in addition to generating a random hash that can
be used to uniquely identify each instance of Foo. If we
are immediately returning from the constructor when all
arguments are omitted, then such an implementation is
not possible. Another solution is needed in this case.25

A solution that satisfies all needs involves a more com-
plicated hack that we will defer to section 2.1.26

23Constructors should take care in limiting what actions they per-
form, especially if they produce side-effects.

24Constructors allow us to initialize our object, placing it in a
consistent and predictable state. Allowing a user to bypass this logic
could not only introduce unintended consequences during the life
of the object, but would mandate additional checks during method
calls to ensure the current state is sane, which will add unnecessary
overhead.

25That is not to say that our first solution — immediately return-
ing if no arguments are provided — is useless. This is a commonly
used method that you may find useful for certain circumstances.

26One may ask why, given all of the complications of ex-
tending prototypes, one doesn’t simply set SubFoo.prototype =

Foo.prototype. The reason for this is simple — we would not be

5

1.4 Shortcomings

ECMAScript’s prototype model is highly flexible, but
leaves much to be desired:

Access Modifiers Classical OOP permits, generally,
three common access modifiers: public, protected and
private. These access modifiers permit encapsulating
data that is unique per instance of a given type, with-
out the performance penalties of privileged members
(see Listing 7).

Not only are access modifiers unsupported, but the
concept of protected members is difficult difficult in
ECMAScript. In order for a member to be accessi-
ble to other objects higher up on the prototype chain
(“subtypes”), they must be public. Using privileged
members would encapsulate the data within the con-
structor, forcing the use of public methods to access
the data and disallowing method overrides, effectively
destroying any chances of a protected API.27

Intuitive Subtyping Consider the verbosity of
Listing 8. Now imagine how much duplicate
code is required to maintain many subtypes in a
large piece of software. This only serves to distract
developers from the actual business logic of the
prototype, forcing them to think in detailed terms
of prototypes rather than in terms of the problem
domain.28

Furthermore, as discussed in section 1.3.1, creating
extensible constructors requires considerable thought
that must be handled on a case-by-case basis, or re-
quires disproportionately complicated hacks (as will
be demonstrated in section 2.1).

Fortunately,29 those issues can be worked around with
clever hacks, allowing us to continue closer toward a clas-
sical development model.

2 Hacking Around Prototypal
Limitations

Section 1 demonstrated how one would work within the
limitations of conventional ECMAScript to produce class-
like objects using prototypes. For those coming from other

able to extend the prototype without modifying the original, as they
would share references to the same object.

27As ease.js will demonstrate, protected APIs are possible through
a clever hack that would otherwise lead to terrible, unmaintainable
code.

28The ability to think within the problem domain rather than ab-
stract machine concepts is one of the key benefits of classical object-
oriented programming.

29Well, fortunately in the sense that ECMAScript is flexible
enough that we can work around the issues. It is, however, ter-
ribly messy. In ECMAScript’s defense — this is a consequence of
the prototypal model; our desire to use class-like objects instead of
conventional prototypes produces the necessity for these hacks.

classical object-oriented languages, these features are in-
sufficient. In order to address many of the remaining is-
sues, more elaborate solutions are necessary.

It should be noted that all the hacks in this section
will, in some way or another, introduce additional over-
head, although it should be minimal in comparison with
the remainder of the software that may implement them.
Performance considerations will be mentioned where the
author finds it to be appropriate. Do not let this concern
deter you from using these solutions in your own code —
always benchmark to determine where the bottleneck lies
in your software.

2.1 Extensible Constructors: Revisited

Section 1.3.1 discussed improving constructor design to
allow for extensibility and to improve performance. How-
ever, the solution presented did not provide a consistent
means of creating extensible constructors with, for exam-
ple, optional argument lists.

The only way to ensure that the constructor will by-
pass validation and initialization logic only when used as
a prototype is to somehow indicate that it is being used
as such. Since prototype assignment is in no way different
than any other assignment, no distinction can be made.
As such, we must create our own.

1 var Foo = (function(extending)

2 {

3 var F = function(name)

4 {

5 if (extending) return;

6
7 if (typeof name !== ’string’)

8 {

9 throw TypeError("Invalid name");

10 }

11
12 this.name = name || "Default";

13
14 // hypothetical; impl. left to reader

15 this.hash = createHash();

16 };

17
18 F.asPrototype = function()

19 {

20 extending = true;

21
22 var proto = new F();

23
24 extending = false;

25 return proto;

26 };

27
28 F.prototype = {

29 // getName(), etc...

30 };

31
32 return F;

33 })(false);

34

6

35 function SubFoo() { /* ... */ }

36 SubFoo.prototype = Foo.asPrototype(); // OK

37 // ...

38
39 var foo1 = new Foo();

40 foo1.getName(); // "Default"

41 foo1.hash; // "..."

42
43 var foo2 = new Foo("Bar");

44 foo2.getName(); // "Bar"

45 foo2.hash; // "..."

Listing 12: Working around prototype extending issues

One solution, as demonstrated in Listing 12, is to use
a variable (e.g. extending) to indicate to a constructor
when it is being used to extend a prototype. The con-
structor, acting as a closure, can then check the value of
this flag to determine whether or not to immediately re-
turn, avoiding all construction logic. This implementation
would allow us to return only a prototype, which is pre-
cisely what we are looking for.

It is unlikely that we would want to expose extending

directly for modification, as this would involve manually
setting the flag before requesting the prototype, then re-
membering to reset it after we are done. Should the user
forget to reset the flag, all future calls to the constructor
would continue to ignore all constructor logic, which could
lead to confusing bugs in the software. To work around
this issue, Listing 12 offers an asPrototype() method on
Foo itself, which will set the flag, create a new instance of
Foo, reset the flag and return the new instance.30

In order to cleanly encapsulate our extension logic, Foo
is generated within a self-executing function (using much
the same concept as privileged members in section 1.2,
with a slightly different application).31 This gives Foo

complete control over when its constructor logic should be
ignored. Of course, one would not want to duplicate this
mess of code for each and every constructor they create.
Factoring this logic into a common, re-usable implementa-
tion will be discussed a bit later as part of a class system
(see section 3.1).

2.2 Encapsulating Data

We discussed a basic means of encapsulation with privi-
leged members in section 1.2. Unfortunately, the solution,
as demonstrated in Listing 7, involves redeclaring methods
that could have otherwise been defined within the proto-
type and shared between all instances. With that goal in

30In classical terms, asPrototype() can be thought of as a static
factory method of Foo.

31Self-executing functions are most often used to introduce scope,
allowing for the encapsulation of certain data. In this case, we en-
capsulate our extension logic and return our constructor (assigned to
F within the self-executing function), which is then assigned to Foo.
Note the parenthesis immediately following the anonymous function,
which invokes it with a single argument to give extending a default
value of false. This pattern of encapsulation and exporting specific
values is commonly referred to as the Module Pattern.

mind, let us consider how we may be able to share data
for multiple instances with a single method definition in
the prototype.

We already know from Listing 12 that we can truly
encapsulate data for a prototype within a self-executing
function. Methods can then, acting as closures, access
that data that is otherwise inaccessible to the remainder
of the software. With that example, we concerned our-
selves with only a single piece of data — the extending

flag. This data has no regard for individual instances (one
could think of it as static data, in classical terms). Us-
ing Listing 12 as a starting point, we can build a system
that will keep track of data per-instance. This data will
be accessible to all prototype members.

2.2.1 A Naive Implementation

One approach to our problem involves to assigning each
instance a unique identifier (an “instance id”, or iid). For
our implementation, this identifier will simply be defined
as an integer that is incremented each time the constructor
is invoked.32 This instance id could be used as a key for
a data variable that stores data for each instance. Upon
instantiation, the instance id could be assigned to the new
instance as a property (we’ll worry about methods of “en-
capsulating” this property later).

1 var Stack = (function()

2 {

3 var idata = [],

4 iid = 0;

5
6 var S = function()

7 {

8 // assign a unique instance identifier

9 // to each instance

10 this.__iid = iid++;

11
12 idata[this.__iid] = {

13 stack: []

14 };

15 };

16
17 S.prototype = {

18 push: function(val)

19 {

20 idata[this.__iid]

21 .stack.push(val);

22 },

23
24 pop: function()

25 {

26 return idata[this.__iid]

27 .stack.pop();

28 }

29 };

32There is, of course, a maximum number of instances with this im-
plementation. Once iid reaches Number.MAX NUMBER, its next assign-
ment will cause it to overflow to Number.POSITIVE INFINITY. This
number, however, can be rather large. On one 64-bit system under
v8, Number.MAX NUMBER = 1.7976931348623157e+308.

7

30
31 return S;

32 })();

33
34 var first = new Stack(),

35 second = new Stack();

36
37 first.push("foo");

38 second.push("bar");

39
40 first.pop(); // "foo"

41 second.pop(); // "bar"

Listing 13: Encapsulating data with shared members (a
naive implementation)

Listing 13 demonstrates a possible stack implementation
using the principals that have just been described. Just
like Listing 12, a self-executing function is used to encap-
sulate our data and returns the Stack constructor.33 In
addition to the instance id, the instance data is stored in
the array idata (an array is appropriate here since iid

is sequential and numeric). idata will store an object
for each instance, each acting in place of this. Upon in-
stantiation, the private properties for the new instance are
initialized using the newly assigned instance id.

Because idata is not encapsulated within the construc-
tor, we do not need to use the concept of privileged mem-
bers (see section 1.2); we need only define the methods in
such a way that idata is still within scope. Fortunately,
this allows us to define the methods on the prototype,
saving us method redeclarations with each call to the con-
structor, improving overall performance.

This implementation comes at the expense of brevity
and creates a diversion from common ECMAScript con-
vention when accessing data for a particular instance us-
ing prototypes. Rather than having ECMAScript handle
this lookup process for us, we must do so manually. The
only data stored on the instance itself (bound to this) is
the instance id, iid, which is used to look up the actual
members from idata. Indeed, this is the first concern —
this is a considerable amount of boilerplate code to create
separately for each prototype wishing to encapsulate data
in this manner.

An astute reader may raise concern over our iid as-
signment on each instance. Firstly, although this name
clearly states “do not touch” with its double-underscore
prefix,34 the member is still public and enumerable.35

There is no reason why we should be advertising this in-
ternal data to the world. Secondly, imagine what may
happen if a user decides to alter the value of iid for a
given instance. Although such a modification would cre-

33The reader should take note that we have omitted our extensible
constructor solution discussed in section 2.1 for the sake of brevity.

34Certain languages used double-underscore to indicate something
internal to the language or system. This also ensures the name will
not conflict with any private members that use the single-underscore
prefix convention.

35The term enumerable simply means that it can be returned by
foreach.

ate some fascinating (or even “cool”) features, it could also
wreak havoc on a system and break encapsulation.36

In environments supporting ECMAScript 5 and later,
we can make the property non-enumerable and read-only
using Object.defineProperty() in place of the iid as-
signment:

Object.defineProperty(this, ’__iid’, {

value: iid++,

writable: false,

enumerable: false,

configurable: false

});

The configurable property simply determines whether
or not we can re-configure a property in the future using
Object.defineProperty(). It should also be noted that
each of the properties, with the exception of value, default
to false, so they may be omitted; they were included here
for clarity.

Of course, this solution leaves a couple loose ends: it will
work only on ECMAScript 5 and later environments (that
have support for Object.defineProperty()) and it still
does not prevent someone from spying on the instance id
should they know the name of the property (iid) ahead
of time. However, we do need the instance id to be a
member of the instance itself for our lookup process to
work properly.

At this point, many developers would draw the line
and call the solution satisfactory. An internal id, al-
though unencapsulated, provides little room for exploita-
tion.37 For the sake of discussion and the development of a
more concrete implementation, let us consider a potential
workaround for this issue.

For pre-ES538 environments, there will be no concrete
solution, since all properties will always be enumerable.
However, we can make it more difficult by randomizing
the name of the iid property, which would require that
the user filter out all known properties or guess at the
name. In ES5+ environments, this would effectively elim-
inate the problem entirely,39 since the property name can-
not be discovered or be known beforehand. Consider, then,
the addition of another variable within the self-executing
function — iid name — which we could set to some ran-
dom value (the implementation of which we will leave to
the reader). Then, when initializing or accessing values,
one would use the syntax:

36Consider that we know a stack is encapsulated within another
object. We could exploit this iid vulnerability to gain access to
the data of that encapsulated object as follows, guessing or other-
wise calculating the proper instance id: (new Stack()). iid =

iid of encapsulated stack instance.
37You could get a total count of the number of instances of a

particular prototype, but not much else.
38Hereinafter, ECMAScript 5 and ES5 will be used interchangably.
39Of course, debuggers are always an option. There is also the pos-

sibility of exploiting weaknesses in a random name implementation;
one can never completely eliminate the issue.

8

idata[this[iid_name]].stack // ...

Of course, this introduces additional overhead, although
it is likely to be negligible in comparison with the rest of
the software.

With that, we have contrived a solution to our encapsu-
lation problem. Unfortunately, as the title of this section
indicates, this implementation is naive to a very impor-
tant consideration — memory consumption. The prob-
lem is indeed so severe that this solution cannot possibly
be recommended in practice, although the core concepts
have been an excellent experiment in ingenuity and have
provided a strong foundation on which to expand.40

2.2.2 A Proper Implementation

Section 2.2.1 proposed an implementation that would per-
mit the true encapsulation of instance data, addressing
the performance issues demonstrated in Listing 7. Un-
fortunately, the solution offered in Listing 13 is prone to
terrible memory leaks. In order to understand why, we
must first understand, on a very basic level, how garbage
collection (GC) is commonly implemented in environments
that support ECMAScript.

Garbage collection refers to an automatic cleaning of
data (and subsequent freeing of memory, details of which
vary between implementations) that is no longer “used”.
Rather than languages like C that require manual allo-
cation and freeing of memory, the various engines that
implement ECMAScript handle this process for us, allow-
ing the developer to focus on the task at hand rather than
developing a memory management system for each piece
of software. Garbage collection can be a wonderful thing
in most circumstances, but one must understand how it
recognizes data that is no longer being “used” in order to
ensure that the memory is properly freed. If data lingers
in memory in such a way that the software will not ac-
cess it again and that the garbage collector is not aware
that the data can be freed, this is referred to as a memory
leak.41

One method employed by garbage collectors is reference
counting; when an object is initially created, the reference
count is set to one. When a reference to that object is
stored in another variable, that count is incremented by
one. When a variable containing a reference to a particular
object falls out of scope, is deleted, or has the value reas-
signed, the reference count is decremented by one. Once
the reference count reaches zero, it is scheduled for garbage
collection.42 The concept is simple, but is complicated by
the use of closures. When an object is referenced within a

40It is my hope that the title of this section will help to encourage
those readers that simply skim for code to continue reading and
consider the flaws of the design rather than adopting them.

41The term “memory leak” implies different details depending on
context — in this case, it varies between languages. A memory leak
in C is handled much differently than a memory leak in ECMAScript
environments. Indeed, memory leaks in systems with garbage collec-
tors could also be caused by bugs in the GC process itself, although
this is not the case here.

42What happens after this point is implementation-defined.

closure, or even has the potential to be referenced through
another object, it cannot be garbage collected.

In the case of Listing 13, consider idata. With each
new instance, iid is incremented and an associated entry
added to idata. The problem is — ECMAScript does not
have destructor support. Since we cannot tell when our
object is GC’d, we cannot free the idata entry. Because
each and every object within idata has the potential to
be referenced at some point in the future, even though our
implementation does not allow for it, it cannot be garbage
collected. The reference count for each index of idata will
forever be ≥ 1.

To resolve this issue without altering this implementa-
tion, there is only one solution — to offer a method to call
to manually mark the object as destroyed. This defeats
the purpose of garbage collection and is an unacceptable
solution. Therefore, our naive implementation contains
a fatal design flaw. This extends naturally into another
question — how do we work with garbage collection to
automatically free the data for us?

The answer to this question is already known from
nearly all of our prior prototype examples. Unfortunately,
it is an answer that we have been attempting to work
around in order to enforce encapsulation — storing the
data on the instance itself. By doing so, the data is au-
tomatically freed (if the reference count is zero, of course)
when the instance itself is freed. Indeed, we have hit a wall
due to our inability to explicitly tell the garbage collector
when the data should be freed.43 The solution is to find a
common ground between Listing 7 and Listing 13.

Recall our original goal — to shy away from the negative
performance impact of privileged members without expos-
ing each of our private members as public. Our discussion
has already revealed that we are forced to store our data on
the instance itself to ensure that it will be properly freed
by the garbage collector once the reference count reaches
zero. Recall that section 2.2.1 provided us with a number
of means of making our only public member, iid, con-
siderably more difficult to access, even though it was not
fully encapsulated. This same concept can be applied to
our instance data.

1 var Stack = (function()

2 {

3 // implementation left to reader

4 var _privname = genRandomName();

5
6 var S = function()

7 {

8 Object.defineProperty(this, _privname, {

9 enumerable: false,

10 writable: false,

11 configurable: false,

12
13 value: {

14 stack: []

43There may be an implementation out there somewhere that does
allow this, or a library that can interface with the garbage collector.
However, it would not be portable.

9

15 }

16 });

17 };

18
19 S.prototype = {

20 push: function(val)

21 {

22 this[_privname].stack.push(val);

23 },

24
25 pop: function()

26 {

27 return this[_privname].stack.pop();

28 }

29 };

30
31 return S;

32 })();

Listing 14: Encapsulating data on the instance itself (see
also Listing 13)

Listing 14 uses a random, non-enumerable property to
make the discovery of the private data considerably more
difficult.44 The random name, privname, is used in each
of the prototypes to look up the data on the appropri-
ate instance (e.g. this[privname].stack in place of
this.stack).45 This has the same effect as Listing 13,
with the exception that it is a bit easier to follow without
the instance management code and that it does not suffer
from memory leaks due to GC issues.

Of course, this implementation depends on fea-
tures introduced in ECMAScript 5 — namely,
Object.defineProperty(), as introduced in sec-
tion 2.2.1. In order to support pre-ES5 environments,
we could define our own fallback defineProperty()

method by directly altering Object,46 as demonstrated in
Listing 15.

1 Object.defineProperty = Object.defineProperty

2 || function(obj, name, config)

3 {

4 obj[name] = config.value;

5 };

Listing 15: A fallback Object.defineProperty() imple-
mentation

Unfortunately, a fallback implementation is not quite
so simple. Certain dialects may only partially implement
Object.createProperty(). In particular, I am refer-
ring to Internet Explorer 8’s incomplete implementation.47

44The property is also read-only, but that does not necessarily aid
encapsulation. It prevents the object itself from being reassigned,
but not any of its members.

45One may decide that the random name is unnecessary overhead.
However, note that static names would permit looking up the data
if the name is known ahead of time.

46The only circumstance I ever recommend modifying built-in bo-
jects/prototypes is to aid in backward compatibility; it is otherwise
a very poor practice that creates tightly coupled, unportable code.

47IE8’s dialect is JScript.

Surprisingly, IE8 only supports this action on DOM ele-
ments, not all objects. This puts us in a terribly awkward
situation — the method is defined, but the implementa-
tion is “broken”. As such, our simple and fairly concise
solution in Listing 15 is insufficient. Instead, we need to
perform a more complicated check to ensure that not only
is the method defined, but also functional for our partic-
ular uses. This check is demonstrated in Listing 16, re-
sulting in a boolean value which can be used to determine
whether or not the fallback in Listing 15 is necessary.

1 var can_define_prop = (function()

2 {

3 try

4 {

5 Object.defineProperty({}, ’x’, {});

6 }

7 catch (e) { return false; }

8
9 return true;

10 })();

Listing 16: Working around IE8’s incomplete
Object.defineProperty() implementation (taken
from ease.js)

This function performs two checks simultaneously — it
first checks to see if Object.defineProperty() exists and
then ensures that we are not using IE8’s broken imple-
mentation. If the invocation fails, that will mean that the
method does not exist (or is not properly defined), throw-
ing an exception which will immediately return false. If
attempting to define a property using this method on a
non-DOM object in IE8, an exception will also be thrown,
returning false. Therefore, we can simply attempt to de-
fine a property on an empty object. If this action suc-
ceeds, then Object.defineProperty() is assumed to be
sufficiently supported. The entire process is enclosed in
a self-executing function to ensure that the check is per-
formed only once, rather than a function that performs
the check each time it is called. The merriment of this
result to Listing 15 is trivial and is left to the reader.

It is clear from this fallback, however, that our property
is enumerable in pre-ES5 environments. At this point, a
random property name would not be all that helpful and
the reader may decide to avoid the random implementa-
tion in its entirety.

2.2.3 Private Methods

Thus far, we have been dealing almost exclusively with the
issue of encapsulating properties. Let us now shift our fo-
cus to the encapsulation of other private members, namely
methods (although this could just as easily be applied to
getters/setters in ES5+ environments). Private methods
are actually considerably easier to conceptualize, because
the data does not vary between instances — a method is
a method and is shared between all instances. As such,
we do not have to worry about the memory management

10

issues addressed in section 2.2.2.
Encapsulating private members would simply imply

moving the members outside of the public prototype (that
is, Stack.prototype). One would conventionally imple-
ment private methods using privileged members (as in sec-
tion 1.2), but it is certainly pointless redefining the meth-
ods for each instance, since Listing 14 provided us with
a means of accessing private data from within the pub-
lic prototype. Since the self-executing function introduces
scope for our private data (instead of the constructor), we
do not need to redefine the methods for each new instance.
Instead, we can create what can be considered a second,
private prototype.

1 var Stack = (function()

2 {

3 var _privname = getRandomName();

4
5 var S = function()

6 {

7 // ... (see previous examples)

8 };

9
10 var priv_methods = {

11 getStack: function()

12 {

13 return this[_privname].stack;

14 }

15 };

16
17 S.prototype = {

18 push: function(val)

19 {

20 var stack = priv_methods.getStack

21 .call(this);

22 stack.push(val);

23 },

24
25 pop: function()

26 {

27 var stack = priv_methods.getStack

28 .call(this)

29 return stack.pop(val);

30 }

31 };

32
33 return S;

34 })();

Listing 17: Implementing shared private methods with-
out privileged members

Listing 17 illustrates this concept of a private proto-
type.48 The object priv methods acts as a second proto-
type containing all members that are private and shared
between all instances, much like the conventional proto-
type. Stack.prototype then includes only the members

48Alternatively, to reduce code at the expense of clarity, one could
simply define functions within the closure to act as private methods
without assigning them to priv methods. Note that call() is still
necessary in that situation.

that are intended to be public. In this case, we have de-
fined a single private method — getStack().

Recall how this is bound automatically for prototype
methods (see section 1.1). ECMAScript is able to do this
for us because of the standardized prototype property.
For our private methods, we have no such luxury. There-
fore, we are required to bind this to the proper object
ourselves through the use of Function.call() (or, alter-
natively, Function.apply()). The first argument passed
to call() is the object to which this will be bound, which
we will refer to as the context. This, unfortunately, in-
creases the verbosity of private method calls, but success-
fully provides us with a private prototype implementation.

Since private members needn’t be inherited by subtypes,
no additional work needs to be done.

2.3 Protected Members

We have thus far covered two of the three access modi-
fiers (see section 2.2) — public and private. Those im-
plementations allowed us to remain blissfully ignorant of
inheritance, as public members are handled automatically
by ECMAScript and private members are never inherited
by subtypes. The concept of protected members is a bit
more of an interesting study since it requires that we put
thought into providing subtypes with access to encapsu-
lated data, without exposing this data to the rest of the
world.

From an implementation perspective, we can think of
protected members much like private; they cannot be part
of the public prototype, so they must exist in their own
protected prototype and protected instance object. The
only difference here is that we need a way to expose this
data to subtypes. This is an issue complicated by our
random name implementation (see section 2.2.2); without
it, subtypes would be able to access protected members
of its parent simply by accessing a standardized property
name. The problem with that is — if subtypes can do it,
so can other, completely unrelated objects. As such, we
will focus on a solution that works in conjunction with our
randomized name (an implementation with a standardized
name is trivial).

In order for the data to remain encapsulated, the name
must too remain encapsulated. This means that the sub-
type cannot request the name from the parent; instead, we
must either have access to the random name or we must
tell the parent what the name should be. The latter will
not work per-instance with the implementation described
in section 2.2.2, as the methods are not redefined per-
instance and therefore must share a common name. Let
us therefore first consider the simpler of options — sharing
a common protected name between the two classes.

1 var _protname = getRandomName();

2
3 var Stack = (function()

4 {

5 var _privname = getRandomName();

11

6
7 var S = function()

8 {

9 // ... (see previous examples)

10
11 Object.defineProperty(this, _privname, {

12 value: { stack: [] }

13 });

14
15 Object.defineProperty(this, _protname, {

16 value: { empty: false }

17 });

18 };

19
20 // a means of sharing protected methods

21 Object.defineProperty(S, _protname, {

22 getStack: function()

23 {

24 return this[_privname].stack;

25 }

26 });

27
28 S.prototype = {

29 push: function(val)

30 {

31 var stack = S[_protname].getStack

32 .call(this);

33 stack.push(val);

34
35 this[_protname].empty = false;

36 },

37
38 pop: function()

39 {

40 var stack = this[_protname]

41 .getStack.call(this)

42
43 this[_protname].empty =

44 (stack.length === 0);

45
46 return stack.pop(val);

47 }

48 };

49
50 S.asPrototype = function()

51 {

52 // ... (see previous examples)

53 };

54
55 return S;

56 })();

57
58
59 var MaxStack = (function()

60 {

61 var M = function(max)

62 {

63 // call parent constructor

64 Stack.call(this);

65
66 // we could add to our protected members

67 // (in practice, this would be private, not

68 // protected)

69 this[_protname].max = +max;

70 };

71
72 // override push

73 M.prototype.push = function(val)

74 {

75 var stack = Stack[_protname].getStack

76 .call(this);

77
78 if (stack.length ===

79 this[_protname].max

80)

81 {

82 throw Error("Maximum reached.");

83 };

84
85 // call parent method

86 Stack.prototype.push.call(this, val);

87 };

88
89 // add a new method demonstrating parent

90 // protected property access

91 M.prototype.isEmpty = function()

92 {

93 return this[_protname].empty;

94 };

95
96 M.prototype = Stack.asPrototype();

97 M.prototype.constructor = M;

98
99 return M;

100 })();

101
102
103 var max = new MaxStack(2);

104 max.push("foo");

105 max.push("bar");

106 max.push("baz"); // Error

107 max.pop(); // "bar"

108 max.pop(); // "foo"

Listing 18: Sharing protected members with subtypes

Listing 18 makes an attempt to demonstrate a protected
property and method implementation while still maintain-
ing the distinction between it and the private member im-
plementation (see section 2.2.2). The example contains
two separate constructors — Stack and MaxStack, the lat-
ter of which extends Stack to limit the number of items
that may be pushed to it. Stack has been modified to
include a protected property empty, which will be set to
true when the stack contains no items, and a protected
method getStack(), which both Stack and its subtype
MaxStack may use to access the private property stack of
Stack.

The key part of this implementation is the declaration
of protname within the scope of both types (Stack and
MaxStack).49 This declaration allows both prototypes to

49One would be wise to enclose all of Listing 18 within a function
to prevent protname from being used elsewhere, exporting Stack

and MaxStack however the reader decides.

12

access the protected properties just as we would the pri-
vate data. Note that privname is still defined individually
within each type, as this data is unique to each.

Protected methods, however, need additional consid-
eration. Private methods, when defined within the self-
executing function that returns the constructor, work fine
when called from within the associated prototype (see sec-
tion 2.2.3). However, since they’re completely encapsu-
lated, we cannot use the same concept for protected meth-
ods — the subtype would not have access to the meth-
ods. Our two options are to either declare the protected
members outside of the self-executing function (as we do
privname), which makes little organizational sense, or to

define the protected members on the constructor itself us-
ing protname and Object.defineProperty()50 to en-
capsulate it the best we can. We can then use the shared
protname to access the methods on Stack, unknown to

the rest of the world.

An astute reader may realize that Listing 18 does not
permit the addition of protected methods without also
modifying the protected methods of the supertype and
all other subtypes; this is the same reason we assign new
instances of constructors to the prototype property. Ad-
ditionally, accessing a protected method further requires
referencing the same constructor on which it was defined.
Fixing this implementation is left as an exercise to the
reader.

Of course, there is another glaring problem with this im-
plementation — what happens if we wish to extend one of
our prototypes, but are not within the scope of protname

(which would be the case if you are using Listing 18 as a
library, for example)? With this implementation, that is
not possible. As such, Listing 18 is not recommended un-
less you intended to have your prototypes act like final
classes.51 As this will not always be the case, we must put
additional thought into the development of a solution that
allows extending class-like objects with protected members
outside of the scope of the protected name protname.

As we already discussed, we cannot request the pro-
tected member name from the parent, as that will provide
a means to exploit the implementation and gain access
to the protected members, thereby breaking encapsula-
tion. Another aforementioned option was telling the par-
ent what protected member name to use, perhaps through
the use of asPrototype() (see section 2.1). This is an op-
tion for protected properties, as they are initialized with
each new instance, however it is not a clean implementa-
tion for members, as they have already been defined on
the constructor with the existing protname. Passing an
alternative name would result in something akin to:

Object.defineProperty(S, _newname, {

value: S[_protname]

});

50See section 2.2.2 for Object.defineProperty() workarounds/-
considerations.

51A final class cannot be extended.

This would quickly accumulate many separate protected
member references on the constructor — one for each sub-
type. As such, this implementation is also left as an ex-
ercise for an interested reader; we will not explore it fur-
ther.52

The second option is to avoid exposing protected prop-
erty names entirely. This can be done by defining a func-
tion that can expose the protected method object. This
method would use a system-wide protected member name
to determine what objects to return, but would never ex-
pose the name — only the object references. However, this
does little to help us with our protected properties, as a
reference to that object cannot be returned until instanti-
ation. As such, one could use a partial implementation of
the previously suggested implementation in which one pro-
vides the protected member name to the parent(s). Since
the protected members would be returned, the duplicate
reference issue will be averted.

The simplest means of demonstrating this concept is to
define a function that accepts a callback to be invoked
with the protected method object. A more elegant imple-
mentation will be described in future sections, so a full
implementation is also left as an exercise to the reader.
Listing 19 illustrates a skeleton implementation.53 The
def function accepts the aforementioned callback with an
optional first argument — base — from which to retrieve
the protected methods.

1 var def = (function()

2 {

3 var _protname = getRandomName();

4
5 return function(base, callback)

6 {

7 var args = Array.prototype.slice.call(

8 arguments

9),

10
11 callback = args.pop(),

12 base = args.pop() || {};

13
14 return callback(base[_protname]);

15 };

16 })();

17
18 var Stack = def(function(protm)

19 {

20 // ...

21
22 return S;

23 });

24
25 var MaxStack = def(Stack, function(protm)

26 {

52The reader is encouraged to attempt this implementation to gain
a better understanding of the concept. However, the author cannot
recommend its use in a production environment.

53Should the reader decide to take up this exercise, keep in mind
that the implementation should also work with multiple supertypes
(that is, type3 extends type2 extends type1).

13

27 // for properties only

28 var _protname = getRandomName();

29
30 // ...

31
32 // asPrototype() would accept the protected

33 // member name

34 M.protoype = S.asPrototype(_protname);

35 M.prototype.constructor = M;

36
37 return M;

38 });

Listing 19: Exposing protected methods with a callback
(brief illustration; full implementation left as an exercise
for the reader)

2.3.1 Protected Member Encapsulation Chal-
lenges

Unfortunately, the aforementioned implementations do
not change a simple fact — protected members are open
to exploitation, unless the prototype containing them can-
not be extended outside of the library/implementation.
Specifically, there is nothing to prevent a user from ex-
tending the prototype and defining a property or method
to return the encapsulated members.

Consider the implementation described in Listing 19.
We could define another subtype, ExploitedStack,
as shown in Listing 20. This malicious type ex-
ploits our implementation by defining two methods —
getProtectedProps() and getProtectedMethods() —
that return the otherwise encapsulated data.

1 var ExploitedStack = def(Stack, function(protm)

2 {

3 var _protname = getRandomName();

4
5 var E = function() { /* ... */ };

6
7 E.prototype.getProtectedProps = function()

8 {

9 return this[_protname];

10 }:

11
12 E.prototype.getProtectedMethods = function()

13 {

14 return protm;

15 };

16
17 E.prototype = Stack.asPrototype(_protname);

18 E.prototype.constructor = E;

19
20 return E;

21 })();

Listing 20: Exploiting Listing 19 by returning protected
members.

Fortunately, our random protname implementation will
only permit returning data for the protected members

of that particular instance. Had we not used random
names, there is a chance that an object could be passed
to getProtectedProps() and have its protected proper-
ties returned.54 As such, this property exploit is minimal
and would only hurt that particular instance. There could
be an issue if supertypes contain sensitive protected data,
but this is an implementation issue (sensitive data should
instead be private).

Methods, however, are a more considerable issue. Since
the object exposed via def() is shared between each
of the instances, much like its parent prototype is, it
can be used to exploit each and every instance (even
if the reader has amended Listing 18 to resolve the
aforementioned protected member addition bug, since
Object.getPrototypeOf() can be used to work around
this amendment). Someone could, for example, reas-
sign Stack[protname].getStack() to do something
else; Object.defineProperty() in Listing 18 only made
Stack[protname] itself read-only. The object itself,
however, can be modified. This can be amended by using
Object.defineProperty() for each and every protected
method, which is highly verbose and cumbersome.

Once we rule out the ability to modify protected method
definitions,55 we still must deal with the issue of having our
protected methods exposed and callable. For example, one
could do the following to gain access to the private stack

object:

(new ExploitedStack()).getProtectedMethods()

.getStack.call(some_stack_instance);

Unfortunately, there is little we can do about this type
of exploit besides either binding56 each method call (which
would introduce additional overhead per instance) or en-
tirely preventing the extension of our prototypes outside
of our own library/software. By creating a protected API,
you are exposing certain aspects of your prototype to the
rest of the world; this likely breaks encapsulation and, in
itself, is often considered a poor practice.57 An alterna-
tive is to avoid inheritance altogether and instead favor
composition, thereby evading this issue entirely. That is
a pretty attractive concept, considering how verbose and
messy this protected hack has been.

3 Encapsulating the Hacks

Imagine jumping into a project in order to make a simple
modification and then seeing the code in Listing 18. This
is a far cry from the simple protected member declarations
in traditional classical object-oriented languages. In fact,

54Details depend on implementation. If a global protected prop-
erty name is used, this is trivial. Otherwise, it could be circumstan-
tial — a matching name would have to be guessed, known, or happen
by chance.

55Of course, this doesn’t secure the members in pre-ES5 environ-
ments.

56See Function.bind().
57Stack.getStack() breaks encapsulation because it exposes the

private member stack to subtypes.

14

there becomes a point where the hacks discussed in the
previous sections become unmaintainable messes that add
a great deal of boilerplate code with little use other than
to distract from the actual software itself.

However, we do not have to settle for those messy im-
plementations. Indeed, we can come up with some fairly
elegant and concise solutions by encapsulating the hacks
we have discussed into a classical object-oriented frame-
work, library or simple helper functions. Let’s not get
ahead of ourselves too quickly; we will start exploring ba-
sic helper functions before we deal with diving into a full,
reusable framework.

This section is intended for educational and experimen-
tal purposes. Before using these examples to develop your
own class system for ECMAScript, ensure that none of
the existing systems satisfy your needs; your effort is best
suited toward the advancement of existing projects than
the segregation caused by the introduction of additional,
specialty frameworks.58 These are discussed a bit later.

3.1 Constructor/Prototype Factory

Section 2.1 offered one solution to the problem of creat-
ing an extensible constructor, allowing it to be used both
to instantiate new objects and as a prototype. Unfortu-
nately, as Listing 12 demonstrated, the solution adds a bit
of noise to the definition that will also be duplicated for
each constructor. The section ended with the promise of a
cleaner, reusable implementation. Perhaps we can provide
that.

Consider once again the issue at hand. The constructor,
when called conventionally with the new operator to create
a new instance, must perform all of its construction logic.
However, if we wish to use it as a prototype, it is unlikely
that we want to run any of that logic — we are simply
looking to have an object containing each of its members
to use as a prototype without the risk of modifying the
prototype of the constructor in question. Now consider
how this issue is handled in other classical languages: the
extend keyword.

ECMAScript has no such keyword, so we will have to
work on an implementation ourselves. We cannot use the
name extend(), as it is a reserved name;59 as such, we will
start with a simple Class factory function with which we
can create new “classes” without supertypes. We can than
provide a Class.extend() method to define a “class” with
a supertype.

1 var Class = (function(extending)

2 {

3 var C = function(dfn)

4 {

5 // extend from an empty base

6 return C.extend(null, dfn);

58That is not to discourage experimentation. Indeed, one of the
best, most exciting and fun ways to learn about these concepts are
to implement them yourself.

59Perhaps for future versions of ECMAScript.

7 };

8
9 C.extend = function(base, dfn)

10 {

11 base = base || function() {};

12
13 // prevent ctor invocation

14 extending = true;

15
16 var ctor = function()

17 {

18 // do nothing if extending

19 if (extending)

20 {

21 return;

22 }

23
24 // call "actual" constructor

25 this.__construct &&

26 this.__construct.apply(

27 this, arguments

28);

29 };

30
31 ctor.prototype = new base();

32 ctor.prototype.constructor = ctor;

33
34 copyTo(ctor.prototype, dfn);

35
36 // done extending; clear flag to

37 // ensure ctor can be invoked

38 extending = false;

39
40 return ctor;

41 };

42
43 function copyTo(dest, members)

44 {

45 var hasOwn = Object.prototype

46 .hasOwnProperty;

47
48 for (var member in members)

49 {

50 if (!hasOwn.call(members, member))

51 {

52 continue;

53 }

54
55 dest[member] = members[member];

56 }

57 }

58
59 return C;

60 })(false);

Listing 21: Constructor factory

Listing 21 demonstrates one such possible implemen-
tation of a constructor factory. Rather than thinking of
“creating a class” and “creating a class with a supertype”
as two separate processes, it is helpful to consider them
one and the same; instead, we can consider the former to

15

be “creating a class with an empty supertype”. As such,
invoking Class() simply calls Class.extend() with null

for the base (on line 6), allowing Class.extend() to han-
dle the creation of a new constructor without a supertype.

Both Class() and Class.extend() accept a dfn argu-
ment, which we will refer to as the definition object ; this
object is to contain each member that will appear on the
prototype of the new constructor. The base parameter,
defined on Class.extend(), denotes the constructor from
which to extend (the constructor that will be instantiated
and used as the prototype). Line 11 will default base to
an empty function if one has not been provided (mainly,
to satisfy the Class() call on line 6).

With that, we can now continue onto creating our con-
structor, beginning on line 16. Section 2.1 introduced the
concept of using an extending flag to let the constructor
know when to avoid all of its construction logic if being
used only as a prototype (see Listing 12). The problem
with this implementation, as discussed, was that it re-
quired that each constructor that wishes to use this pat-
tern implement it themselves, violating the DRY60 prin-
ciple. There were two main areas of code duplication
in Listing 12 — the checking of the extending flag in
the constructor and the setting (and resetting) of the
flag in F.asPrototype(). In fact, we can eliminate the
asPrototype() method altogether once we recognize that
its entire purpose is to set the flags before and after in-
stantiation.

To address the first code duplication issue — the check-
ing of the flag in the constructor — we must remove the
need to perform the check manually for each and every
constructor. The solution, as demonstrated in Listing 21,
is to separate our generic constructor logic (shared be-
tween all constructors that use the factory) from the logic
that can vary between each constructor. ctor on line
16 accomplishes this by first performing the extending

check (lines 19–22) and then forwarding all arguments
to a separate function (construct()), if defined, using
Function.apply() (lines 25–28). One could adopt any
name for the constructor method; it is not significant.61

Note that the first argument to Function.apply() is im-
portant, as it will ensure that this is properly bound
within the construct() method.

To address the second code duplication issue and remove
the need for asPrototype() in Listing 12 entirely, we can
take advantage of the implications of Class.extend() in
Listing 21. The only time we wish to use a constructor as
a prototype and skip construct() is during the process
of creating a new constructor. As such, we can simply
set the extending flag to true when we begin creating
the new constructor (see line 14, though this flag could be
placed anywhere before line 31) and then reset it to false

once we are done (line 38). With that, we have eliminated
the code duplication issues associated with Listing 12.

The remainder of Listing 21 is simply an abstraction

60“Don’t repreat yourself”, The Pragmatic Programmer.
61The construct name was taken from PHP.

around the manual process we have been performing since
section 1.1 — setting the prototype, properly setting the
constructor and extending the prototype with our own
methods. Recall section 2.3 in which we had to manually
assign each member of the prototype for subtypes in order
to ensure that we did not overwrite the existing proto-
type members (e.g. M.prototype.push() in Listing 18).
The very same issue applies here: Line 31 first sets the
prototype to an instance of base. If we were to then set
ctor.prototype = dfn, we would entirely overwrite the
benefit gained from specifying base. In order to automate
this manual assignment of each additional prototype mem-
ber of dfn, copyTo() is provided, which accepts two ar-
guments — a destination object dest to which each given
member of members should be copied (defined on line 43
and called on line 34).

Like the examples provided in section 2, we use a self-
executing function to hide the implementation details of
our Class function from the rest of the world.

To demonstrate use of the constructor factory, Listing 22
defines two classes62 — Foo and SubFoo. Note that how,
by placing the curly braces on their own line, we can create
the illusion that Class() is a language construct:

61 var Foo = Class(

62 {

63 __construct: function(name)

64 {

65 if (!name)

66 {

67 throw TypeError("Name required");

68 }

69
70 this._name = ’’+(name);

71 },

72
73 getName: function()

74 {

75 return this._name;

76 }

77 });

78
79 var SubFoo = Class.extend(Foo,

80 {

81 setName: function(name)

82 {

83 this._name = ’’+(name);

84 }

85 });

86
87
88 var myfoo = new Foo("Foo"),

89 mysub = new SubFoo("SubFoo");

90
91 myfoo.getName(); // "Foo"

92 mysub.getName(); // "SubFoo"

62The reader should take care in noting that the term “class”, as
used henceforth, will refer to a class-like object created using the
systems defined within this article. ECMAScript does not support
classes, so the use of the term “class” in any other context is mis-
leading.

16

93
94 mysub.setName("New Name");

95 mysub.getName(); // "New Name"

96
97 // parent Foo does not define setName()

98 myfoo.setName("Error"); // TypeError

99
100 // our name will be required, since we

101 // are not extending

102 new Foo(); // TypeError

Listing 22: Demonstrating the constructor factory

The reader should note that an important assertion has
been omitted for brevity in Listing 21. Consider, for ex-
ample, what may happen in the case of the following:

Class.extend("foo", {});

It is apparent that "foo" is not a function and there-
fore cannot be used with the new operator. Given that,
consider line 31, which blindly invokes base() without
consideration for the very probable scenario that the user
mistakenly (due to their own unfamiliarity or a simple
bug) provided us with a non-constructor for base. The
user would then be presented with a valid, but not neces-
sarily useful error — did the error occur because of user
error, or due to a bug in the factory implementation?

To avoid confusion, it would be best to perform a simple
assertion before invoking base (or wrap the invocation in
a try/catch block, although doing so is not recommended
in case base() throws an error of its own):

if (typeof base !== ’function’)

{

throw TypeError("Invalid base provided");

}

Note also that, although this implementation will work
with any constructor as base, only those created with
Class() will have the benefit of being able to check the
extending flag. As such, when using Class.extend()

with third-party constructors, the issue of extensible con-
structors may still remain and is left instead in the hands
of the developer of that base constructor.

3.1.1 Factory Conveniences

Although our constructor factory described in section 3.1
is thus far very simple, one should take the time to realize
what a powerful abstraction has been created: it allows
us to inject our own code in any part of the constructor
creation process, giving us full control over our class-like
objects. Indeed, this abstraction will be used as a strong
foundation going forward throughout all of section 2.2. In
the meantime, we can take advantage of it in its infancy
to provide a couple additional conveniences.

First, consider the syntax of Class.extend() in
Listing 21. It requires the extending of a constructor to
be done in the following manner:

var SubFoo = Class.extend(Foo, {});

Would it not be more intuitive to instead be able to
extend a constructor in the following manner?

var SubFoo = Foo.extend({});

The above two statements are semantically equivalent
— they define a subtype SubFoo that extends from the
constructor Foo — but the latter example is more concise
and natural. Adding support for this method is trivial, in-
volving only a slight addition to Listing 3.1’s C.extend()
method, perhaps around line 30:

31 ctor.extend = function(dfn)

32 {

33 C.extend.call(this, dfn);

34 };

Listing 23: Adding a static extend() method to con-
structors

Of course, one should be aware that this implementation
is exploitable in that, for example, Foo.extend() could be
reassigned at any point. As such, using Class.extend()

is the safe implementation, unless you can be certain
that such a reassignment is not possible. Alternatively,
in ECMAScript 5 and later environments, one can use
Object.defineProperty(), as discussed in sections 2.2.1
and 2.2.2, to make the method read-only.

Now consider the instantiation of our class-like objects,
as was demonstrated in Listing 22:

var inst = new Foo("Name");

We can make our code even more concise by eliminat-
ing the new operator entirely, allowing us to create a new
instance as such:

var inst = Foo("Name");

Of course, our constructors do not yet support this, but
why may we want such a thing? Firstly, for consistency —
the core ECMAScript constructors do not require the use
of the keyword, as has been demonstrated throughout this
article with the various Error types. Secondly, the omis-
sion of the keyword would allow us to jump immediately
into calling a method on an object without dealing with
awkward precedence rules: Foo("Name").getName()

vs. (new Foo("Name")).getName(). However, those
reasons exist more to offer syntactic sugar; they do little to
persuade those who do want or not mind the new operator.

The stronger argument against the new operator is what
happens should someone omit it, which would not be at all
uncommon since the keyword is not required for the core
ECMAScript constructors. Recall that this, from within
the constructor, is bound to the new instance when in-
voked with the new operator. As such, we expect to be able
to make assignments to properties of this from within

17

the constructor without any problems. What, then, hap-
pens if the constructor is invoked without the keyword?
this would instead be bound (according to the ECMA-
Script standard [1]) to “the global object”,63 unless in
strict mode. This is dangerous:

1 function Foo()

2 {

3 this.Boolean = true;

4 }

5
6 // ok

7 var inst = new Foo();

8 inst.Boolean; // true

9
10 // bad

11 Foo();

12 new Boolean(); // TypeError

Listing 24: Introducing unintended global side-effects
with constructors

Consider Listing 24 above. Function Foo(), if invoked
with the new operator, results in an object with a Boolean

property equal to true. However, if we were to invoke
Foo() without the new operator, this would end up over-
writing the built-in global Boolean object reference. To
solve this problem, while at the same time providing the
consistency and convenience of being able to either in-
clude or omit the new operator, we can add a small block
of code to our generated constructor ctor (somewhere
around line 23 of Listing 21, after the extend check but
before construct() is invoked):

24 if (!(this instanceof ctor))

25 {

26 return new ctor.apply(

27 null, arguments

28);

29 }

Listing 25: Allowing for omission of the new operator

The check, as demonstrated in Listing 25, is as simple as
ensuring that this is properly bound to a new instance of
our constructor ctor. If not, the constructor can simply
return a new instance of itself through a recursive call.

Alternatively, the reader may decide to throw an error
instead of automatically returning a new instance. This
would require the use of the new operator for instantia-
tion, while still ensuring that the global scope will not be
polluted with unnecessary values. If the constructor is in
strict mode, then the pollution of the global scope would
not be an issue and the error would instead help to point
out inconsistencies in the code. However, for the reason
that the keyword is optional for many core ECMAScript
constructors, the author recommends the implementation
in Listing 25.

63In most browser environments, the global object is window.

3.2 Private Member Encapsulation

Section 2.2 discussed the encapsulation of private mem-
ber data by means of private property and method ob-
jects, thereby avoiding the performance impact of privi-
leged members (see section 1.2). In order to avoid mem-
ory leaks, the private data was stored on the instance itself
rather than a truly encapsulated object. The amount of
code required for this implementation was relatively small,
but it is still repeated unnecessarily between all construc-
tors.

The private member implementation had two distinct
pieces — private properties, as demonstrated in Listing 14,
and private methods, as demonstrated in Listing 17. This
distinction is important, as private methods should not
be redefined for each new instance (see Figure 1). Prop-
erties, however, must have their values copied for each
new instance to prevent references from being shared be-
tween them (see Listing 2; note that this is not an issue for
scalars). For the time being, we will focus on the method
implementation and leave the manual declaration of pri-
vate properties to the construct() method.

The listings in section 2.2 were derived from a simple
concept — the private member objects were within the
scope of the prototype members. However, if we are to
encapsulate this hack within our constructor factory, then
the members (the definition object) would be declared out-
side the scope of any private member objects that are hid-
den within our factory. To expose the private “prototype”
object, we could accept a function instead of a definition
object, which would expose a reference to the object (as
in Listing 19). However, this would be very unnatural
and unintuitive; to keep our “class” declarations simple,
another method is needed.

Consider the private member concept in a classical sense
— the private data should be available only to the methods
of the class and should not be accessible outside of them.
That is, given any class C with private property C. priv

and public method C.getPrivValue(), and an instance
i of class C, i. priv should not be defined unless within
the context of i.getPrivValue(). Consider then the only
means of exposing that data to the members of the pro-
totype in ECMAScript without use of closures: through
the instance itself (this). This naturally derives an im-
plementation that had not been previously considered due
to the impracticality of its use without factory — exposing
private members before a method invocation and revoking
them after the method has returned.

To accomplish this, the factory must be able to intelli-
gently determine when a method is being invoked. This
leads us into a somewhat sensitive topic — function wrap-
ping. In order to perform additional logic on invocation of
a particular method, it must be wrapped within another
function. This wrapper would expose the private data
on this, invoke the original function associated with the
method call, remove the reference and then return what-
ever value was returned by the original function. This

18

creates the illusion of invoking the method directly.64

1 function wrap(func)

2 {

3 return function()

4 {

5 return ’one ’ +

6 func.apply(this, arguments) +

7 ’ three’;

8 };

9 }

10
11 function str(value)

12 {

13 return value;

14 }

15
16 wrap(str)(’two’); // "one two three"

Listing 26: Wrapping a function by returning a new func-
tion which calls the original

Listing 26 demonstrates the basic concept of a function
wrapper. wrap() accepts a single argument, func, and
returns a new anonymous function which invokes func,
returning its value with a prefix and a suffix. Note how
all arguments are forwarded to func, allowing us to invoke
our wrapped function as if it were the original. Also note
the context in which func is being called (the first argu-
ment of apply()). By binding this of func to this of
our wrapper, we are effectively forwarding it. This detail
is especially important if we are using a wrapper within
a prototype, as we must bind this to the instance that
the method is being invoked upon. Use of wrap() with a
prototype is demonstrated in Listing 27 below.

17 function Foo(value)

18 {

19 this._value = value;

20 };

21
22 Foo.prototype = {

23 bar: wrap(function()

24 {

25 return this._value;

26 })

27 };

28
29 var inst = new Foo(’2’);

30 inst.bar(); // "one 2 three"

Listing 27: Using wrap() from Listing 26 with prototypes

It is this concept that will be used to implement method
wrapping in our constructor factory. For each function f
of definition object D, f ′ will be created using a method
similar to Listing 27. f ′ will invoke f after setting the

64This is the same concept used to emulate Function.bind() in
pre-ECMAScript 5 environments. This concept can also be easily
extended to create partially applied functions.

private member object on this, then reset it after f re-
turns. Finally, the return value of f will be returned by
f ′. It should be noted that f ′ must exist even if f is pub-
lic, since public methods may still need access to private
members.65

Many readers are likely to be concerned about a deci-
sion that wraps every function of our definition object, as
this will require two function calls each time a method
is invoked. Figure 2a (page 20) shows why this detail is
likely to be a concern — invoking our wrapped function
is so slow in comparison to invoking the original function
directly that the solution seems prohibitive. However, one
must consider how functions are actually used — to per-
form some sort of business logic. It is rare that we would
invoke bodiless functions continuously in a loop. Rather,
we should take into consideration the percent change be-
tween function invocations that contain some sort of busi-
ness logic. This is precisely what Figure 2b (page 20) takes
into consideration, showing that our invocation worry is
would actually be a micro-optimization. For example, in
software that performs DOM manipulation, the perfor-
mance impact of wrapper invocation is likely to be negli-
gible due to repaints being highly intensive operations.

One legitimate concern of our wrapper implementation,
however, is limited call stack space. The wrapper will ef-
fectively cut the remaining stack space in half if dealing
with recursive operations on itself, which may be a prob-
lem for environments that do not support tail call opti-
mizations, or for algorithms that are not written in such
a way that tail call optimizations can be performed.66 In
such a situation, we can avoid the problem entirely by rec-
ommending that heavy recursive algorithms do not invoke
wrapped methods; instead, the recursive operation can be
performed using “normal” (unwrapped) functions and its
result returned by a wrapped method call.

That said, call stack sizes for ECMAScript environments
are growing ever larger. Call stack limits for common
browsers (including historical versions for comparison) are
listed in Figure 3 (page 21). Should this limit be reached,
another alternative is to use setTimeout() to reset the
stack and continue the recursive operation. This can also
have the benefit of making the operation asynchronous.

Factoring this logic into the constructor factory is fur-
ther complicated by our inability to distinguish between
members intended to be public and those intended to be
private. In section 2.2, this issue was not a concern be-
cause the members could be explicitly specified separately
per implementation. With the factory, we are provided
only a single definition object; asking for multiple would
be confusing, messy and unnatural to those coming from
other classical object-oriented languages. Therefore, our
second task shall be to augment copyTo() in Listing 21 to
distinguish between public and private members.

65As we will see in the examination of Figure 2, the performance
impact of this decision is minimal.

66Another concern is that the engine may not be able to perform
tail call optimization because the function may recurse on the wrap-
per instead of itself.

19

0

100

200

300

400

500

600

700

800

Chromium 14 Firefox 8

O
p

s/
s

(m
il

li
o
n

s)
No Wrapper

Factory

734

381

64
2

(-
1,
13

5%
)

(-
18

,8
64

%
)

(a) Wrapper performance (invocation only). Operations per sec-
ond rounded to millions. [3] Numbers in parenthesis indicate per-
cent change between the two values, demonstrating a significant
performance loss.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Chromium 14 Firefox 8

O
p

s/
s

No Wrapper
Factory

52,342

65,947

(b) Wrapper performance with business logic ((new
Array(100)).join(’|’).split(’|’)); performance impact is
negligible. Operations per second. [4]

Figure 2: Function wrapping performance considerations. When measuring invocation performance, the wrapper appears to
be prohibitive. However, when considering the business logic that the remainder of the software is likely to contain, the effects
of the wrapper are negligible. As such, worrying about the wrapper is likely to be a micro-optimization, unless dealing with
call stack limitations. The wrapper in these tests simply invokes the wrapped method with Function.apply(), forwarding all
arguments.

Section 1.2 mentioned the convention of using a single
underscore as a prefix for member names to denote a pri-
vate member (e.g. this. foo). We will adopt this conven-
tion for our definition object, as it is both simple and per-
formant (only a single-character check). Combining this
concept with the wrapper implementation, we arrive at
Listing 28.

1 var Class = (function(extending)

2 {

3 // implementation left to reader

4 var _privname = getRandomName();

5
6 var C = function(dfn)

7 {

8 // extend from an empty base

9 return C.extend(null, dfn);

10 };

11
12 C.extend = function(base, dfn)

13 {

14 base = base || function() {};

15
16 // prevent ctor invocation

17 extending = true;

18
19 var ctor = function()

20 {

21 // do nothing if extending

22 if (extending)

23 {

24 return;

25 }

26
27 // call "actual" constructor

28 this.__construct &&

29 this.__construct.apply(

30 this, arguments

31);

32 };

33
34 // public prototype

35 ctor.prototype = new base();

36 ctor.prototype.constructor = ctor;

37
38 // private prototype (read-only,

39 // non-configurable, non-enumerable)

40 Object.defineProperty(

41 ctor, _privname, { value: {} }

42);

43
44 copyTo(

45 ctor.prototype,

46 ctor[_privname],

47 dfn

48);

49
50 // done extending; clear flag to

51 // ensure ctor can be invoked

52 extending = false;

53
54 return ctor;

55 };

56
57 function copyTo(pub, priv, members)

58 {

59 var hasOwn = Object.prototype

20

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

C
hrom

ium
1

C
hrom

ium
14

Firefox
3

Firefox
8

Internet
Explorer

7

Internet
Explorer

8

Safari 3.2

Safari 4

C
al

l
st

ac
k

si
ze

21,837

26,139

3,000

39,051

1,789 2,232
500

37,448

Figure 3: Call stack limits of various common browsers. [5]
Determining the call stack limit for your own environment is
as simple as incrementing a counter for each recursive call until
an error is thrown.

60 .hasOwnProperty;

61
62 for (var member in members)

63 {

64 if (!hasOwn.call(members, member))

65 {

66 continue;

67 }

68
69 // if prefixed with an underscore,

70 // assign to private "prototype"

71 var dest = (member[0] === ’_’)

72 ? priv : pub;

73
74 dest[member] = wrap(

75 members[member]

76);

77 }

78 }

79
80 function wrap(method)

81 {

82 return function()

83 {

84 this.__priv =

85 this.constructor[_privname];

86
87 var retval = method.apply(

88 this, arguments

89);

90
91 this.__priv = undefined;

92 return retval;

93 };

94 }

95

96 return C;

97 })(false);

Listing 28: Altering the constructor factory in Listing 21
to support private methods in a manner similar to
Listing 17

In order to expose the private methods only from within
wrapped methods, Listing 28 relies on the fact that only
the constructor factory knows the name of the private
“prototype” object (as denoted by privname). Wrap-
pers, before invoking the wrapped function (method), will
assign the private object to this. priv (line 84) and unas-
sign it after the wrapped function returns (line 91).67

Methods may then access private members by referencing
this. priv.
copyTo(), now receiving both public and private desti-

nation objects as arguments, will place all members pre-
fixed with an underscore on the private member object
(lines 71–72). As has already been mentioned, the member
will be wrapped regardless of whether or not it is private
(line 74), ensuring that public methods also have access to
private members.

Listing 29 demonstrates how this implementation may
be used to define a private method getPrivValue() that
is accessable only to other methods; attempting to invoke
the method publically would result in a TypeError (re-
sulting from an attempt to call undefined as if it were
a function). Also note that Foo. priv, although defined
from within the method getValue(), is undefined after
the method returns.

1 var Foo = Class(

2 {

3 getValue: function()

4 {

5 return this.__priv._getPrivValue();

6 },

7
8 _getPrivValue: function()

9 {

10 return ’private’;

11 }

12 });

13
14 var inst = new Foo();

15 inst.getValue(); // "private"

16 inst._getPrivValue(); // TypeError

17 inst.__priv; // undefined

Listing 29: Demonstrating use of private methods with
constructor factory

3.2.1 Wrapper Implementation Concerns

The wrapper implementation is not without its dilemmas.
Firstly, consider how wrap() clears priv in Listing 28

67We set the value to undefined rather than using the delete

operator because the latter causes a slight performance hit under
v8.

21

(lines 84–91). The wrapper requires that the call stack be
cleared up to the point of the invocation of the wrapped
function. Consequently, this means that any code exe-
cuted before the call stack is cleared to that point will
have access to the instance during which time this. priv

is assigned, giving that code access to private members
and breaking encapsulation.

1 var Database = Class(

2 {

3 // ...

4
5 forEachRow: function(callback)

6 {

7 for (row in this._rows)

8 {

9 callback(row);

10 }

11 },

12
13 _getPassword: function()

14 {

15 return ’secret’;

16 }

17);

18
19 var db = Database(’...’),

20 passwd = ’’;

21
22 // ...

23 db.forEachRow(function(row)

24 {

25 passwd = db.__priv._getPassword();

26 });

27
28 // oops

29 unauthorizedDbOperation(’user’, passwd);

Listing 30: Exploiting wrapper implementation via call-
backs to gain access to private members outside of the
class

This fatal flaw is demonstrated in Listing 30, which exe-
cutes a callback before the wrapped function returns. That
callback, which has access to the instance that called it, is
able to access the private members because it is executed
before its caller returns. There are three ways to work
around this:

1. Remove the assignment before invoking the callback,

2. Use setTimeout() or setInterval() to invoke the
callback, allowing the stack to clear before the call-
back is invoked, or

3. Do not invoke any functions that are not defined on
the class itself.

None of the above options are acceptable solutions. The
first option adds unnecessary logic to the method that
makes assumptions about the underlying system, which is
especially dangerous if the implementation of wrap() were

to ever change. The second solution does not suffer from
the same design issues as the first, but forces the method
to be asynchronous, which is not always desirable. The
third option is terribly prohibitive, as it not only disallows
any type of serial callback, but also disallows invoking any
methods of injected dependencies.

A proper solution to this issue is obvious, but its dis-
cussion will be deferred to future implementations due to
additional complexities raised when dealing with proper-
ties. Until that time, the reader should be aware of the
issue and consider potential solutions.

The second concern is a bit more subtle. Once again,
we focus around lines 82–91 in Listing 28. Consider what
problems that this wrapper may cause when dealing with
nested method calls — that is, one method calling another
on the same instance.

1 var Database = Class(

2 {

3 __construct: function(host, user, pass)

4 {

5 // __priv contains private members

6 var ip = this.__priv._resolveHost();

7
8 // __priv is undefined

9 this.__priv._connect(ip, user, pass);

10 },

11
12 // ...

13 });

Listing 31: Problems with nested method calls given the
wrap() implementation in Listing 28

This issues is demonstrated by Listing 31. The
Database class’s construct() method performs two pri-
vate method calls — resolveHost(), to get the IP ad-
dress of the host, and connect(), which attempts to con-
nect to the database. Unfortunately, after the call to
resolveHost(), its wrapper sets priv to undefined

(line 91 in Listing 28), which will cause the second method
call to fail!

To resolve this issue, wrap() could store the previous
value of this. priv and then, instead of setting the value
to undefined after the wrapped function has returned, re-
store this. priv to its original value. This modification
is shown in Listing 32.

80 function wrap(method)

81 {

82 return function()

83 {

84 var prev = this.__priv;

85
86 // expose private member object

87 this.__priv =

88 this.constructor[_privname];

89
90 var retval = method.apply(

91 this, arguments

22

92);

93
94 // restore previous value

95 this.__priv = prev;

96 return retval;

97 };

98 }

Listing 32: Fixing private object assignment in nested
wrapped function calls by restoring the previous value

When the first wrapper is invoked, the previous value of
this. priv will be undefined, allowing the wrapper to
continue to operate as it used to. When nested wrappers
are invoked, the previous value will contain the private
member object and will allow this. priv to be properly
restored on return. This functions much like a stack, using
the call stack instead of an array.68

4 Licenses

This document and all source code contained within is
free,69 released under the GNU FDL. The source code
contained within the listings are also licensed under the
GNU GPL, unless otherwise noted within this section, to
permit their use in free software. The code listings are
intended primarily for instruction and example and may
not be directly applicable to your software. If licensing is
a concern, one may use the listings to implement the code
from scratch rather than using the code verbatim.

Each license may be found at
http://www.gnu.org/licenses/.

4.1 Document License

Copyright c© 2012 Mike Gerwitz.

Permission is granted to copy, distribute and/or mod-
ify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later ver-
sion published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled ”GNU Free Documentation Li-
cense”.

4.2 Code Listing License

Copyright c© 2012 Mike Gerwitz.

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU Af-
fero General Public License as published by the Free
Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without

68This solution could have easily been worked into Listing 28, but
hopefully the additional discussion provided insight into critical de-
sign decisions.

69Free as in “free speech”, not “free beer”.

even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Affero General Public License for more de-
tails.

4.2.1 Code Listing License Exceptions

The following listings are provided under alternative li-
censes.

Listing 16 GNU LGPL (taken from ease.js)

4.3 Reference Licenses

The reader should be warned that certain references men-
tioned within this article are non-free (that is, their
licenses do not permit redistribution, modification, or
derivative works). These references are denoted with
“[NF]”. While these resources are not the official docu-
mentation for free software (and consequently do not pose
a direct threat to the users of free software), be aware
that they do prohibit you from helping your friends and
neighbors by giving them a copy.

This article itself holds no such restrictions.

5 Author’s Note

Please note that this article was never completed, but is
still fairly comprehensive; it was under heavy development
to include relevant information from the development of
GNU ease.js. The reader is encouraged to browse through
the technical manual for the project at http://easejs.

org/manual/Implementation-Details.html. The man-
ual contains implementation details and rationale for much
of what will be elaborated upon in this paper.

References

[1] ECMA International. ECMA-262, 5.1 edition, Jun
2011. Section 10.4.3.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[3] Mike Gerwitz. Function wrapper (invocation). http:

//jsperf.com/coope-function-wrapper. Accessed:
25 Feb 2012.

[4] Mike Gerwitz. Function wrapper (w/
business logic). http://jsperf.com/

coope-function-wrapper-w-blogic. Accessed:
25 Feb 2012.

[5] Nicholas C. Zakas. High Performance JavaScript.
O’Reilly Media, Inc, 2010. Reference for some of the
call stack limits mentioned in the article [NF].

23

http://easejs.org/manual/Implementation-Details.html
http://easejs.org/manual/Implementation-Details.html
http://jsperf.com/coope-function-wrapper
http://jsperf.com/coope-function-wrapper
http://jsperf.com/coope-function-wrapper-w-blogic
http://jsperf.com/coope-function-wrapper-w-blogic

	Class-Like Objects in ECMAScript
	Prototypes
	Privileged Members
	Subtypes and Polymorphism
	Extensible Constructors

	Shortcomings

	Hacking Around Prototypal Limitations
	Extensible Constructors: Revisited
	Encapsulating Data
	A Naive Implementation
	A Proper Implementation
	Private Methods

	Protected Members
	Protected Member Encapsulation Challenges

	Encapsulating the Hacks
	Constructor/Prototype Factory
	Factory Conveniences

	Private Member Encapsulation
	Wrapper Implementation Concerns

	Licenses
	Document License
	Code Listing License
	Code Listing License Exceptions

	Reference Licenses

	Author's Note

