
The TAME Programming Language
Design and Implementation (Living Document)

Mike Gerwitz

May 2021

Tame is The Algebraic Metalanguage, a programming language and collec-
tion of tools designed to aid in the development, understanding, and main-
tenance of systems performing numerous calculations on a complex graph of
dependencies, conditions, and a large number of inputs. Tame has existed for
over a decade, and while its initial design was successful and still in active use
today, it does su�er from inconsistencies and tradeo�s that introduce certain
impediments to users of the language, and compromise future optimizations
and language evolution. It also lacks documentation not just of the language
itself, but also of the underlying principles and implementation.
This document is an attempt to formally consider certain parts of Tame as

it undergoes redesign and reimplementation as part of the Tamer project. It
is considered a living document|it is not likely to ever be a �nished work.

Contents

0 Notational Conventions 2
0.1 Propositional Logic . 2
0.2 First-Order Logic and Set Theory . 3
0.3 Functions . 4

0.3.1 Binary Operations On Functions . 4
0.4 Monoids and Sequences . 5
0.5 Vectors and Index Sets . 6
0.6 XML Notation . 8

1 Classification System 8
1.1 Matches . 13

References 16

Copyright c
 2021 Ryan Specialty Group, LLC. CC-BY-SA 4.0.

cba

Index 17

0 Notational Conventions

This section provides a fairly terse overview of the foundational mathematical concepts
used in this paper. While we try to reason about Tame in terms of algebra, �rst-order
logic; and set theory; notation varies even within those branches. To avoid ambiguity,
especially while introducing our own notation, core operators and concepts are explicitly
de�ned below.
This section begins its numbering at 0. This is not only a hint that Tame (and this

paper) use 0-indexing, but also because equations; de�nitions; theorems; corollaries; and
the like are all numbered relative to their section. When you see any of these pre�xed with
\0.", this sets those references aside as foundational mathematical concepts that are not
part of the theory and operation of Tame itself.

0.1 Propositional Logic

We reproduce here certain axioms and corollaries of propositional logic for convenience
and to clarify our interpretation of certain concepts. The use of the symbols ∧, ∨, and ¬

are standard. The symbol ` means \infer". We use =⇒ in place of → for implication,
since the latter is used to denote the mapping of a domain to a codomain in reference to
functions. We further use � in place of ↔ to represent material equivalence.

Definition 0.1 (Logical Conjunction). p, q ` (p∧ q).

Definition 0.2 (Logical Disjunction). p ` (p∨ q) and q ` (p∨ q).

Definition 0.3 (∧-Associativity). (p∧ (q∧ r)) ` ((p∧ q)∧ r).

Definition 0.4 (∨-Associativity). (p∨ (q∨ r)) ` ((p∨ q)∨ r).

Definition 0.5 (∧-Commutativity). (p∧ q) ` (q∧ p).

Definition 0.6 (∨-Commutativity). (p∨ q) ` (q∨ p).

Definition 0.7 (∧-Simpli�cation). p∧ q ` p.

Definition 0.8 (Double Negation). ¬¬p ` p.

Definition 0.9 (Law of Excluded Middle). ` (p∨ ¬p).

Definition 0.10 (Law of Non-Contradiction). ` ¬(p∧ ¬p).

2

Definition 0.11 (De Morgan's Theorem). ¬(p∧q) ` (¬p∨¬q) and ¬(p∨q) ` (¬p∧¬q).

Definition 0.12 (Material Equivalence). p � q `
�
(p∧ q)∨ (¬p∧ ¬q)

�
.

� denotes a logical identity. Consequently, it'll often be used as a de�nition operator.

Definition 0.13 (Implication). p =⇒ q ` (¬p∨ q).

Definition 0.14 (Tautologies). p � (p∧ p) and p � (p∨ p).

Definition 0.15 (Truth Values). ` > and ` ¬?.

Definition 0.16 (Boolean/Integer Equivalency). {0, 1} 2 Z,? � 0 and > � 1.

0.2 First-Order Logic and Set Theory

The symbol ; represents the empty set|the set of zero elements. We assume that the
axioms of ZFC set theory hold, but de�ne 2 here for clarity.

Todo:

Introduce

set-builder

notation, [,
\.

Definition 0.17 (Set Membership). x 2 S � {x} \ S 6= ;.

8 denotes �rst-order universal quanti�cation (\for all"), and 9 �rst-order existential
quanti�cation (\there exists"), over some domain of discourse.

Definition 0.18 (Existential Quanti�cation). 9x 2 X (P(x)) � > 2 {P(x) | x 2 X}.

Definition 0.19 (Universal Quanti�cation). 8x 2 X (P(x)) � ¬9x 2 X (¬P(x)).

Remark 0.1 (Vacuous Truth). By De�nition 0.18, 9x 2 ; (P) � ? and by De�nition 0.19,
8x 2 ; (P) � >. And so we also have the tautologies ` ¬9x 2 ; (P) and ` 8x 2 ; (P).
Empty domains lead to undesirable consequences|in particular, we must carefully guard
against them in De�nition 0.20 and De�nition 0.21 to maintain soundness.

We also have this shorthand notation:

8x, y, z 2 S (P) � 8x 2 S (8y 2 S (8z 2 S (P))) , (0.1)

9x, y, z 2 S (P) � 9x 2 S (9y 2 S (9z 2 S (P))) . (0.2)

Definition 0.20 (Quanti�ers Over Connectives). Assuming that x is not free in ϕ,

ϕ∧ 9x 2 X (P(x)) � 9x 2 X (ϕ∧ P(x)) ,

ϕ∨ 9x 2 X (P(x)) � 9x 2 X (ϕ∨ P(x)) assuming X 6= ;.

Definition 0.21 (Quanti�er Elimination). 9x 2 X (ϕ) � ϕ assuming X 6= ; and x is not
free in ϕ.

3

0.3 Functions

The notation f = x 7→ x 0 : A → B represents a function f that maps from x to x 0, where
x 2 A (the domain of f) and x 0 2 B (the co-domain of f).
A function A → B can be represented as the Cartesian product of its domain and

codomain, A� B. For example, x 7→ x2 : Z→ Z is represented by the set of ordered pairs{
(x, x2) | x 2 Z

}
, which looks something like

{. . . , (0, 0), (1, 1), (2, 4), (3, 9), . . .} .

The set of values over which some function f ranges is its image, which is a subset of its
codomain. In the example above, both the domain and codomain are the set of integers Z,
but the image is

{
x2 | x 2 Z

}
, which is clearly a subset of Z.

We therefore have

A→ B � A� B, (0.3)

f : A→ B ` f � A� B, (0.4)

f = α 7→ α 0 : A→ B =
{
(α,α 0) | α 2 A∧ α 0 2 B

}
, (0.5)

f[D � A] = {f(α) | α 2 D} � B, (0.6)

f[] = f[A]. (0.7)

An ordered pair (x, y) is also called a 2-tuple. Generally, an n-tuple is used to represent
an n-ary function, where by convention we have (x) = x. So f(x, y) = f((x, y)) = x + y.
If we let t = (x, y), then we also have f(x, y) = ft, which we'll sometimes write as a
subscript ft where disambiguation is necessary and where parenthesis may add too much
noise; this notation is especially well-suited to indexes, as in f1. Binary functions are often
written using in�x notation; for example, we have x+ y rather than +(x, y).

fx = f(x) 2 {b | (x, b) 2 f} (0.8)

0.3.1 Binary Operations On Functions

Consider two unary functions f and g, and a binary relation R. We introduce a notation R�

to denote the composition of a binary function with two unary functions.

f : A→ B (0.9)

g : A→ D (0.10)

R : B�D→ F (0.11)

fR�g = α 7→ fαRgα : A→ F (0.12)

4

Note that f and g must share the same domain A. In that sense, this is the mapping of
the operation R over the domain A. This is analogous to unary function composition f �g.
A scalar value x can be mapped onto some function f using a constant function. For

example, consider adding some number x to each element in the image of f:

f+�(7→ x) = α 7→ fα + x.

The symbol is used to denote a variable that matches anything but is never referenced,
and is often referred to as a \wildcard" (since it matches anything) or a \hole" (since its
value goes nowhere).
Note that we consider the bracket notation for the image of a function (f : A → B)[A]

to itself be a binary function. Given that, we have f[]� = f[A]� for functions returning
functions (such as vectors of vectors in Section 0.5).

0.4 Monoids and Sequences

Definition 0.22 (Monoid). Let S be some set. A monoid is a triple (S, �, e) with the
axioms

� : S� S→ S (Monoid Binary Closure)

8a, b, c 2 S (a � (b � c) = (a � b) � c)) , (Monoid Associativity)

9e 2 S (8a 2 S (e � a = a � e = a)) . (Monoid Identity)

Monoids originate from abstract algebra. A monoid is a semigroup with an added
identity element e. Only the identity element must be commutative, but if the binary
operation � is also commutative, then the monoid is a commutative monoid.1

Consider some sequence of operations x0 � � � � �xn 2 S. Intuitively, a monoid tells us how
to combine that sequence into a single element of S. When the sequence has one or zero
elements, we then use the identity element e 2 S: as x0 � e = x0 in the case of one element
or e � e = e in the case of zero.

Definition 0.23 (Monoidic Sequence). Generally, given some monoid (S, �, e) and a se-
quence {xj}j2J 2 S where n < |J|, we have x0 � x1 � � � � � xn−1 � xn represent the successive
binary operation on all indexed elements of x. When it's clear from context that the index
is increasing by a constant of 1, that notation is shortened to x0 � � � � � xn to save space.
When |J| = 1, then n = 0 and we have the sequence x0. When |J| = 0, then n = −1, and
no such sequence exists, in which case we expand into the identity element e.

1A commutative monoid is less frequently referred to as an abelian monoid, related to the common term
abelian group.

5

For example, given the monoid (Z,+, 0), the sequence 1+2+� � �+4+5 can be shortened to
1+� � �+5 and represents the arithmetic progression 1+2+3+4+5 = 15. If x = {1, 2, 3, 4, 5},
x0 + � � �+ xn represents the same sequence. If x = {1}, that sequence evaluates to 1 = 1. If
x = {}, we have 0.

Lemma 0.1. (B,∧,>) is a commutative monoid.

Proof. (B,∧,>) is associative by De�nition 0.3 and commutative by De�nition 0.5. The
identity element is > 2 B by De�nition 0.7.

Lemma 0.2. (B,∨,?) is a commutative monoid.

Proof. (B,∨,?) is associative by De�nition 0.4 and commutative by De�nition 0.6. The
identity ? 2 B follows from

?∨ p � p∨? by De�nition 0.6

� ¬(¬p∧ ¬?) by De�nition 0.11

� ¬(¬p) by De�nition 0.7

� p. by De�nition 0.8

0.5 Vectors and Index Sets

Tame supports scalar, vector, and matrix values. Unfortunately, its implementation his-
tory leaves those concepts a bit tortured.
A vector is a sequence of values, de�ned as a function of an index. An index set is a set

that is used to index values from another set; they are usually subscripts of another set.
A family is a set that is indexed by the same index set. In this paper, we assume that an
index set represents a range of integer values from 0 to some number.

Definition 0.24 (Family and Index Set). Let S be a family indexed by index set J. Then,

{Sj}j2J , J = {0, 1, . . . , |J|− 1} 2 P (Z) . (0.13)

P (S) denotes the power set of S|the set of all subsets of S including ; and S itself.

Definition 0.25 (Vector). Let J � Z represent an index set. A vector v 2 VR is a totally
ordered sequence of elements represented as a function of an element of its index set:

v = hv0, . . . , vji
R

j2J = j 7→ vj : J→ R. (0.14)

6

This de�nition means that vj = v(j), making the subscript a notational convenience. We

may omit the superscript such that VR = V and h. . .iR = h. . .i.
When appropriate, a vector may also be styled in a manner similar to linear algebra,

noting that our indexes begin at 0 instead of 1:

hv0, . . . , vji
R

j2J =

2
64
v0
...
vj

3
75
j2J

=

2
64
v0
...
vj

3
75 . (0.15)

Definition 0.26 (Matrix). Let J � Z represent an index set. A matrix M 2 VVR is a
totally ordered sequence of elements represented as a function of an element of its index
set:

M = hM0, . . . ,Mji
VR

j2J = j 7→Mj : J→ VR. (0.16)

The consequences of De�nition 0.26|de�ning a matrix as a vector of independent
vectors|are important. This de�nes a matrix to be more like a multidimensional array,
with no requirement that the lengths of the vectors be equal.

Corollary 0.1 (Matrix Row Length Variance). ` 9M 2 VVR (¬8j8k (|Mj| = |Mk|)).

Corollary 0.1 can be read \there exists some matrixM such that not all row lengths ofM
are equal". In other words|the inner vectors of a matrix can vary in length. However,
certain systems (such as that of Axiom 1.1) may place restrictions by specifying the inner
index set as a dependent type:

Mjk

�
j2J
k2Kj

: J→ Kj → R, K : J→ P (Z) . (0.17)

This makes K a set of index sets. When |K[J]| = 1 (that is|all Kj are the same index set),
the matrix is rectangular, and can be written in a manner similar to linear algebra, noting
that our indexes begin at 0 instead of 1; that we use double-subscripts (since matrices are
functions returning functions); and that we use j, k in place of m,n.

2
66664

M00 M01 . . . M0k

M10 M01 . . . M0k
...

...
. . .

...
Mj0 Mj1 . . . Mjk

3
77775
j2J

k2K0

if |K[J]| = 1. (0.18)

We may optionally omit the domains as in the vector notation.

7

If a matrix is not rectangular, the symbol � can be used to explicitly denote that speci�c
scalar values are unde�ned; this is useful when the matrix representation is desirable when
describing the transformation of non-rectangular data into rectangular data. For example,

2
64
0 1 2

3 4 �

5 � �

3
75
j2J
k2Kj

= hh0, 1, 2i , h3, 4i , h5ii ,
J = {0, 1, 2} ,

K = {(0, {0, 1, 2}), (1, {0, 1}), (2, {0})} .
(0.19)

Definition 0.27 (Rank). The rank of some variable x is an integer value

kxk =


2 x 2 VVR ,

1 x 2 VR,

0 x 2 R.

Intuitively, the rank represents the number of dimensions of some variable x. A scalar
has zero dimensions (a point); a vector has one (a line); and a matrix has two (a plane).
In Tame, the rank is referred to as dimensions using the attribute @dim.

0.6 XML Notation

The grammar of Tame is XML. Equivalence relations will be used to map source expres-
sions to an underlying mathematical expression. For example,

<foo bar="x" baz="y" /> � x = y

de�nes that pattern of foo expression to be materially equivalent to x = y|anywhere an
equality relation appears, you could equivalently replace it with that XML representation
without changing the meaning of the mathematical expression.
Variables may also bind to literals in an XML expression. For example,

<quux α />, α 2 {ε, bar="baz"}

can represent either <quux /> or <quux bar="baz" />. ε represents the empty string.
Any text typeset in typewriter represents a literal string of characters.

1 Classification System

A classi�cation is a user-de�ned abstraction that describes (\classi�es") arbitrary data.
Classi�cations can be used as predicates, generating functions, and can be composed into
more complex classi�cations. Nearly all conditions in Tame are speci�ed using classi�ca-
tions.

8

All classi�cations represent �rst-order sentences|that is, they contain no free variables.
Intuitively, this means that all variables within a classi�cation are tightly coupled to the
classi�cation itself. This limitation is mitigated through use of the template system.

Axiom 1.1 (Classi�cation Introduction). Todo:

Symbol in

place of =
here (� not

appropri-

ate).

<classify as="c" yields="γ" desc=" " α>
D
M0
j k

E
j2J
k2Kj

D
v0j

E
j2J

s0

...
...

...D
Ml
jk

E
j2J
k2Kj

D
vmj

E
j2J

sn

</classify> =
c

C
γ

(�,M, v, s) ,

(1.1a)

where

J � Z 6= ;, (1.1b)

8j 2 J
�
Kj � Z 6= ;

�
, (1.1c)

8k
�
Mk : J→ Kj2J → B

�
, (1.1d)

8k
�
vk : J→ B

�
, (1.1e)

8k
�
sk 2 B

�
, (1.1f)

α 2 {ε, any="true"} , (1.1g)

and the monoid � is de�ned as

� =

{
(B,∧,>) α = ε,

(B,∨,?) α = any="true".
(1.1h)

Todo:

Emphasize

index sets,

both rela-

tionships

and

nonempty.

We use a 4-tuple C (�,M, v, s) to represent a �1-classi�cation (a classi�cation with
the binary operation ∧ or ∨) consisting of a combination of matrix (M), vector (v),
and scalar (s) matches, rendered above in columns.2 A ∧-classi�cation is pronounced
\conjunctive classi�cation", and ∨ \disjunctive".3

2The symbol � was chosen since the binary operation for a monoid is � (see Section 0.4) and � looks
vaguely like (�), representing a portion of the monoid triple.

3 Conjunctive and disjunctive classi�cations used to be referred to, respectively, as universal and exis-

tential, referring to fact that 8 {a0, . . . , an} (a) � a0 ∧ . . . ∧ an, and similarly for 9. This terminology
has changed since all classi�cations are in fact existential over their matches' index sets, and so the
terminology would otherwise lead to confusion.

9

The variables c and γ are required in Tame but are both optional in our notation Ccγ,
and can be used to identify the two di�erent data representations of the classi�cation.4

α serves as a placeholder for an optional any="true", with ε representing the empty
string in (1.1g). Note the wildcard variable matching @desc|its purpose is only to provide
documentation.

Corollary 1.1 (� Commutative Monoid). � is a commutative monoid in Axiom 1.1.

Proof. By Axiom 1.1, � must be a monoid. Assume α = ε. Then, � = (B,∧,>), which
is proved by Lemma 0.1. Next, assume α = any="true". Then, � = (B,∨,?), which is
proved by Lemma 0.1.

While Axiom 1.1 seems to imply an ordering to matches, users of the language are free
to specify matches in any order and the compiler will rearrange matches as it sees �t. This
is due to the commutativity of � as proved by Corollary 1.1, and not only a�ords great
ease of use to users of Tame, but also great
exibility to compiler writers.
For notational convenience, we will let

C∧(M,v, s) =C ((B,∧,>) ,M, v, s) ,

C∨(M,v, s) =C ((B,∨,>) ,M, v, s) .
(1.2)

Axiom 1.2 (Classi�cation-Predicate Equivalence). Let Ccγ ((B, �, e) ,M, v, s) be a classi�-
cation by Axiom 1.1. We then have the �rst-order sentence

c � 9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk

�
� v0j � � � � � v

m
j

�
� s0 � � � � � sn.

Axiom 1.3 (Classi�cation Yield). Let Ccγ ((B, �, e) ,M, v, s) be a classi�cation by Ax-
iom 1.1. Then,

r =


2 M 6= ;,

1 M = ;∧ v 6= ;,

0 M [v = ;,

(1.3a)

9j 2 J
�
9k 2 Kj

�
Γ 2jk =M0

j k
� � � � �Ml

jk
� v0j � � � � � v

m
j � s0 � � � � � sn

��
, (1.3b)

9j 2 J
�
Γ 1j = v0j � � � � � v

m
j � s0 � � � � � sn

�
, (1.3c)

Γ 0 = s0 � � � � � sn. (1.3d)

γ = Γ r. (1.3e)

4classify/@yields is optional in the grammar of Tame, but the compiler will generate one for us if one
is not provided. As such, we will for simplicity consider it to be required here.

10

Theorem 1.1 (Classi�cation Composition). Classi�cations may be composed to create

more complex classi�cations using the classi�cation yield γ as in Axiom 1.3. This

interpretation is equivalent to Axiom 1.2 by

c � 9j 2 J
�
9k 2 Kj

�
Γ 2jk

�
� Γ 1j

�
� Γ 0. (1.4)

Proof. Expanding each Γ in Axiom 1.3, we have

c � 9j 2 J
�
9k 2 Kj

�
Γ 2jk

�
� Γ 1j

�
� Γ 0 by Axiom 1.3

� 9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk
� v0j � � � � � v

m
j � s0 � � � � � sn

�

v0j � � � � � v
m
j � s0 � � � � � sn

�
� s0 � � � � � sn,

� 9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk

�
� v0j � � � � � v

m
j � s0 � � � � � sn

v0j � � � � � v
m
j � s0 � � � � � sn

�
� s0 � � � � � sn, by De�nition 0.20

� 9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk

�
by De�nition 0.14

v0j � � � � � v
m
j � s0 � � � � � sn

�
� s0 � � � � � sn,

� 9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk

�
by De�nition 0.20

v0j � � � � � v
m
j

�
� s0 � � � � � sn � s0 � � � � � sn,

� 9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk

�
by De�nition 0.14

v0j � � � � � v
m
j

�
� s0 � � � � � sn.

Lemma 1.1 (Classi�cation Predicate Vacuity). Let Ccγ ((B, �, e) , ;, ;, ;) be a classi�ca-

tion by Axiom 1.1. � is a monoid by Corollary 1.1. Then c � γ � e.

Proof. First consider c.

c � 9j 2 J (9k (e) � e) � e by De�nition 0.23

� 9j 2 J (e � e) � e by De�nition 0.21

� 9j 2 J (e) � e by Monoid Identity

� e � e by De�nition 0.21

� e. by Monoid Identity

For γ, we have r = 0 by Axiom 1.3, and so by similar steps as c, γ = Γ r = e. Therefore
c � e.

11

<classify as="always" yields="alwaysTrue"

desc="Always true" />
=

always

C∧
alwaysTrue

(;, ;, ;) .

<classify as="never" yields="neverTrue"

any="true"

desc="Never true" />

=
never

C∨
neverTrue

(;, ;, ;) .

Figure 1: always and never from package core/base.

Figure 1 demonstrates Lemma 1.1 in the de�nitions of the classi�cations always and
never. These classi�cations are typically referenced directly for clarity rather than creating
other vacuous classi�cations, encapsulating Lemma 1.1.

Theorem 1.2 (Classi�cation Rank Independence). Let � = (B, �, e). Then,

C
γ

(�,M, v, s) �C
0
@�,C

γ 000
(�,M, ;, ;) ,C

γ 00
(�, ;, v, ;) ,C

γ 0
(�, ;, ;, s)

1
A . (1.5)

Proof. First, by Axiom 1.3, observe these special cases following from Lemma 1.1:

Γ 0002 =M0
j k
� � � � �Ml

jk
, assuming v [s = ;

Γ 001 = v0j � � � � � v
m
j , assuming M [s = ;

Γ 00 = s0 � � � � � sn. assuming M [v = ;

(1.6)

By Theorem 1.1, we must prove

9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk

�
� v0j � � � � � v

m
j

�
� s0 � � � � � sn

� c � 9j 2 J
�
9k 2 Kj

�
γ 000
jk

�
� γ 00

j

�
� γ 0. (1.7)

By Axiom 1.3, we have r 000 = 2, r 00 = 1, and r 0 = 0, and so γ 000 = Γ 0002, γ 00 = Γ 001, and
γ 0 = Γ 00. By substituting these values in 1.7, the theorem is proved.

These de�nitions may also be used as a form of pattern matching to look up a corre-
sponding variable. For example, if we have Cfoo and want to know its @yields, we can
write Cfoo

γ to bind the @yields to γ.5

5This is conceptually like a symbol table lookup in the compiler.

12

1.1 Matches

A classi�cation consists of a set of binary predicates calledmatches. Matches may reference
any values, including the results of other classi�cations (as in Theorem 1.1 on page 11),
allowing for the construction of complex abstractions over the data being classi�ed.
Matches are intended to act intuitively across inputs of di�erent ranks|that is, one can

match on any combination of matrix, vector, and scalar values.

Axiom 1.4 (Match Input Translation). Let j and k be free variables intended to be bound
in the context of Axiom 1.2. Let J and K be de�ned by Axiom 1.1. Given some input x,

xı =


xjk kxk = 2;

xj kxk = 1;

x kxk = 0,

j 2 J,

k 2 Kj.

Axiom 1.5 (Match Rank). Let ∼ : R� R→ R be some binary relation. Then,

kxı ∼ yık =

{
kxk kxk � kyk ,

kyk otherwise.

Axiom 1.6 (Element-Wise Equivalence (�ı)).

kxık = kyık = 2, (xı �ı yı) ` 8j, k (xjk � yjk) ,

kxık = kyık = 1, (xı �ı yı) ` 8j (xj � yj) ,

kxık = kyık = 0, (xı �ı yı) ` (x � y).

Matches are represented by match nodes in Tame. Since the primitive is rather verbose,
core/match also de�nes templates providing a more concise notation (t:match-ζ below).

Axiom 1.7 (Match Introduction).

<t:match-ζ on="x"

value="y" /> �ı

<match on="x">

<c:ζ>

<c:value-of name="y">

</c:ζ>

</match>

∼ =



= ζ = eq,

< ζ = lt,

> ζ = gt,

� ζ = leq,

� ζ = geq.
�ı xı ∼ yı,

Axiom 1.8 (Match Equality Short Form).

<match on="x" /> �ı <match on="x" value="TRUE" />.

Todo:

De�ne types

and

typedef.
13

Axiom 1.9 (Match Membership). When T is a type de�ned with typedef,

<match on="x" anyOf="T" /> �ı xı 2 T.

Theorem 1.3 (Classi�cation Match Element-Wise Binary Relation). Within the context

of Axiom 1.2, all match forms represent binary relations R � R → B ranging over

individual elements of all index sets J and Kj 2 K.

Proof. First, observe that each of =, <, >, �, �, and 2 have type R� R→ B. We must
then prove that xı and yı are able to be interpreted as R within the context of Axiom 1.2.
When x, y 2 R, we have the trivial case xı = x 2 R and yı = y 2 R by Axiom 1.4.

Otherwise, variables j and k are free.
Consider kxı ∼ yık = 2; then kxı ∼ yık 2 VVR by De�nition 0.27, and so by Theorem 1.2

we have
8j 2 J

�
8k 2 Kj

�
M0
j k
� � � � �Ml

jk

��
� 8j 2 J (8k 2 Kj (xı ∼ yı)) , (1.8)

which binds j and k to the variables of their respective quanti�ers. Proceed similarly for
kxı ∼ yık = 1 and observe that j becomes bound.
Assume x 2 VVR ; then xjk 2 R by De�nition 0.26. Assume y 2 VR; then yj 2 R by

De�nition 0.25. Finally, observe that j ranges over J in 1.8, and k over Kj.

Theorem 1.3 is responsible for proving that matches range over each individual index.
More subtly, it also shows that matches work with any combination of rank. Figure 2
demonstrates a complete translation of source Tame XML using all ranks.

<classify as="fullrank" desc="Example of all ranks">

<match on="A" value="u" /> �ı Aı = uı
<match on="A" value="t" /> �ı Aı = tı
<match on="u" value="t" /> �ı uı = tı
<match on="t" /> �ı tı = >

</classify>

by Axiom 1.7 (1.9)

=
fullrank

C∧
�� �

Ajk = uj
�
,
�
Ajk = t

� �
, (uj = t) , t

�
by Axiom 1.1 (1.10)

� 9j 2 J
�
9k 2 Kj

� �
Ajk = uj

�
∧
�
Ajk = t

� �
∧ uj = t

�
∧ t. by Theorem 1.3. (1.11)

Figure 2: Example demonstrating Theorem 1.3 using all ranks.

Visually, the one-dimensional construction of Axiom 1.2 does not lend itself well to how
intuitive the behavior of the system actually is. We therefore establish a relationship to
the notation of linear algebra to emphasize the relationship between each of the inputs.

14

Axiom 1.10 (Classi�cation Matrix Notation). Let Γ 2 be de�ned by Axiom 1.3. Then,

Γ 2 =

2
664
M0
00

. . . M0
0k

...
. . .

...
M0
j0

. . . M0
jk

3
775 � � � � �

2
664
Ml
00

. . . Ml
0k

...
. . .

...
Ml
j0

. . . Ml
jk

3
775 �

2
664
v00
...
v0j

3
775 � � � � �

2
664
vm0
...
vmj

3
775 � s0 � � � � � sn,

from which Γ 1, Γ 0, and γ can be derived.

Remark 1.1 (Logical Connectives With Matrix Notation). From the de�nition of Ax-
iom 1.10, it should be clear that the logical connective � necessarily acts like a Hadamard
product[1] with respect to how individual elements are combined.

Axiom 1.10 makes it easy to visualize classi�cation operations simply by drawing hori-
zontal boxes across the predicates, as demonstrated by Figure 3. This visualization helps
to show intuitively how the classi�cation system is intended to function, with matrices
serving as higher-resolution vectors.6

�

�
M0
00
� � � � �Ml

00

�
� v00 � � � � � v

m
0 � s0 � � � � � sn

...
...

�
M0
0k
� � � � �Ml

0k

�
� v00 � � � � � v

m
0 � s0 � � � � � sn

Γ 20

2
664
M0
00

. . . M0
0k

...
. . .

...
M0
j0

. . . M0
jk

3
775
� � � � �

� � � � �

2
664
Ml
00

. . . Ml
0k

...
. . .

...
Ml
j0

. . . Ml
jk

3
775
�

�

2
664
v00
...
v0j

3
775
� � � � �

� � � � �

2
664
vm0
...
vmj

3
775
� s0 � � � � � sn

� s0 � � � � � sn

...

� �
M0
j0
� � � � �Ml

j0

�
� v0j � � � � � v

m
j � s0 � � � � � sn

...
...

�
M0
jk
� � � � �Ml

jk

�
� v0j � � � � � v

m
j � s0 � � � � � sn

Γ 2j

Figure 3: Visual interpretation of classi�cation by Axiom 1.10. For each boxed row of the
matrix notation there is an equivalence to the �rst-order logic of Theorem 1.1.

Lemma 1.2 (Match As Proposition). Matches can be represented using propositional

logic provided that binary operators of Axiom 1.7 are restricted to B� B→ B.
6For example, with insurance, one may have a vector of data by risk location, and a matrix of chosen class
codes by location. Consequently, we expect Mj to be the set of class codes associated with location j
so that it can be easily matched against location-level data vj.

15

Proof.

x = > � x, = : B� B→ B;

x = ? � ¬x, = : B� B→ B;

x < y � ¬x∧ y, < : B� B→ B;

x > y � x∧ ¬y, > : B� B→ B;

x � y � ¬x∨ y, � : B� B→ B;

x � y � x∨ ¬y, � : B� B→ B;

x 2 B � >, 2 : B� B→ B.

Theorem 1.4 (Classi�cation As Proposition). Classi�cations with either M [v = ; or

with constant index sets can be represented by propositional logic provided that the

domains of the binary operators of Axiom 1.7 are restricted to B� B→ B.

Proof. Propositional logic does not include quanti�ers or relations. Matches of the domain
B� B→ B are proved to be propositions by Lemma 1.2. Having eliminated relations, we
must now eliminate quanti�ers.
Assume M [v = ;. By Theorem 1.2,

c � s0 � � � � � sn,

which is a propositional formula.
Similarly, if we de�ne our index set J to be constant, we are then able to eliminate

existential quanti�cation over J as follows:

c � 9j 2 J
�
v0j � � � � � v

m
j

�
,

�
�
v00 � � � � � v

m
0

�
∨ � � �∨

�
v0|J|−1 � � � � � v

m
|J|−1

�
,

(1.12)

which is a propositional formula. Similarly, for matrices,

c � 9j 2 J
�
9k 2 Kj

�
M0
j k
� � � � �Ml

jk

��
,

� 9j 2 J
��
M0
j 0
� � � � �M0

j |Kj|−1

�
∨ � � �∨

�
Ml
j0
� � � � �Ml

j |Kj|−1

��
,

and then proceed as in 1.12.

References

[1] Hadamard product (matrices). Wikipedia. May 26, 2020. url: https://en.wikipedia.
org/wiki/Hadamard_product_(matrices).

16

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

Index

<>, see XML
?, see boolean, false
>, see boolean, true

C, see classi�cation
�, see classi�cation, monoid
Γ , see classi�cation, yield
γ, see classi�cation, yield
∧, see conjunction
∨, see disjunction
ε, see empty string
�, see equivalence
�ı, see equivalence, element-wise
f, g, see function
R�, see function, binary composition
�, see function, composition→, see function, domain map
[], see function, image
7→, see function, map
=⇒, see implication
{aj}j2J, see index set
`, see infer
Z, see integer
¬, see negation
9, see quanti�cation, existential
8, see quanti�cation, universal
R, see real number
R, see relation
� � � , see sequence
{}, see set
;, see set empty
2, see set membership
�, see set, Cartesian product
\, see set, intersection
P (S), see set, power set
[, see set, union
(), see tuple
�, see unde�ned
, see variable, wildcard

V, see vector

abstract algebra, 5
monoid, 5
semigroup, 5

boolean
FALSE (?), 3
TRUE (>), 3

classi�cation, 8
@any, 9
@as, 9
as predicate, 10
as proposition, 15{16
classify, 9
commutativity, 10
composition, 11
coupling, 8
index set, 9
intuition, 15
match, 13
matrix notation, 14
monoid, 9{10
rank, 12
terminology history, 9
vacuity, 11{12
yield (γ, Γ), 10
@yields, 9

compiler
classi�cation commutativity, 10

conjunction
monoid, 6

conjunction (∧), 2

De Morgan's theorem, 2
see rank, 8
disjunction

monoid, 6

17

disjunction (∨), 2
domain, see function, domain
domain of discourse, 3

empty string, 8
empty string (ε), 9
equivalence

element-wise (�ı), 13
material (�), 3

family, see index set
�rst-order logic

sentence, 8
function, 4

as a set, 4
binary composition (R�), 4
codomain, 4
composition (�), 5
constant, 5
domain, 4
domain map (→), 4
image ([]), 4
map (7→), 4

implication (=⇒), 3
index set

notation ({aj}j2J), 6
classi�cation, 9

infer (`), 2
integer (Z), 3

law of excluded middle, 2
law of non-contradiction, 2
logic

�rst-order, 3
propositional, 2

map, see function
see vector, 7
monoid, see astract algebra, monoid5

negation (¬), 2

package
core/match, 13

quanti�cation
9x, y, z, 3
8x, y, z, 3
existential (9), 3
universal (8), 3
vacuous truth, 3

rank, 8
dimensions, 8

real number (R), 6
relation, see function

sequence, 5, see vctor6
set

Cartesian product (�), 4
empty (;, {}), 3
intersection (\), 3
membership (2), 3
power set (P (S)), 6
union ([), 3

tuple (()), 4

unde�ned, 7

variable
wildcard/hole (), 5

vector
de�nition (hi), 6
matrix, 7
rectangular, 7

XML
notation (<>), 8

18

	Notational Conventions
	Propositional Logic
	First-Order Logic and Set Theory
	Functions
	Binary Operations On Functions

	Monoids and Sequences
	Vectors and Index Sets
	XML Notation

	Classification System
	Matches

	References
	Index

