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Abstract

This paper contains the author’s answers and proofs for selected ex-
ercises from Section 4.2.8 of the “dragon book”—Compiler: Principles,
Techniques and Tools (hereinafter “CPTT”). This book, while an excel-
lent resource, can be challenging for self-study as it does not provide a
means of verifying one’s answers outside of a classroom setting (unless the
reader has confidence in his/her proofs). This paper is intended for two
audiences: (a) those reading the book and looking for clarification and
discussion on the exercises and (b) those who are curious on the topic of
context-free grammars that do not possess the text. The selected exercises
are those that the author felt would be most useful for discussion and, as
such, are expected to be challenging to the reader. Less challenging por-
tions of exercises may be discussed to segue into the more challenging
portions.

1 Context-Free Grammars

The focus of this discussion (and of Section 4.2 in CPTT) is on context-free
grammars (or simply “grammars”).

2 Convention and Notation

The following notational conventions are used throughout this paper. In most
cases, they have been borrowed from the text.

For grammars, capital symbols are used to represent non-terminals. The
S symbol is used to denote the starting non-terminal. The symbol → is used
to separate the non-terminal from its production body, whereas ⇒ indicates
a single step in a derivation. Leftmost and rightmost derivations are denoted

1



⇒
lm

and ⇒
rm

respectively.
∗⇒ means “derives in zero or more steps”, whereas

+⇒ means “derives in one or more steps”. The symbol | separates multiple
productions for a single non-terminal. Any time punctuation is placed at the
end of a grammar or derivation, it should be read as part of the surrounding
paragraph, not as part of the production or derivation. For example, in the
grammar

S → 0 S 1 | ε,
the trailing comma is not part of the construction. Furthermore, whitespace is
not significant and may be discarded. ε is the empty string.

“The text” refers to CPTT, whereas “this paper” refers to the paper you
are currently reading.

3 Exercise 4.2.3—Grammar Design

This exercises requests that the reader design grammars for a series of language
descriptions a–f; we will discuss each of them. Although the text does not
request it, proofs will be provided for each, as they are useful to demonstrate
correctness and an excellent practice in discipline.

Exercise 4.2.3a The set of all strings of 0’s and 1’s such that every 0 is immediately followed by
at least one 1.

The grammar for this exercise is fairly trivial, but will serve as a useful
introduction to the formalities of this paper. First, let us consider a grammar
that demonstrates such a property. Our alphabet is Σ = {0, 1}. The only
restriction on the sentences of our grammar is that each 0 must be followed by
a 1—this therefore means that we can have any number of adjacent 1’s, but it
is not possible to have adjacent 0’s. Considering that our alphabet Σ has only
two characters, this grammar is fairly simple:

S → 1S | 01S | ε. (1)

As an example, let us consider some of the sentences that we may wish to be
derived by this grammar. In particular, consider derivation of the string 01011:

S ⇒ 01 S ⇒ 01 01 S ⇒ 01 01 1S ⇒ 01 01 1 ε
∗⇒ 01 01 1. (2)

Notice also that a string of 1’s—such as 1111—is also derivable given our
grammar:

S ⇒ 1 S ⇒ 1 1 S ⇒ 1 1 1 S ⇒ 1 1 1 1 S ⇒ 1 1 1 1 ε
∗⇒ 1 1 1 1, (3)

as is the empty string ε in one step:

S ⇒ ε. (4)

To prove that grammar (1) is correct, we must prove two independent state-
ments:
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1. The only strings derivable from grammar (1) are those of 0’s and 1’s such
that every 0 is immediately followed by at least one 1;

2. The grammar accepts all such strings.

We will prove these statements in order. For the first statement, we must
show that, at any given step n of grammar (1), the only derivable strings contain
a 1 after each and every 0 (or that the string contains no 0’s). For the second
statement, we must show that any string containing 0’s and 1’s such that every
0 is followed by at least one 1 is derivable from our grammar. Grammar proofs
are discussed in Section 4.2.6 of the text.

PROOF The only strings derivable from S are those of 0’s and 1’s such that every 0 is
immediately followed by at least one 1. We shall perform this proof inductively
on the number of steps n in a given derivation.

Basis The basis is n = 1. In one step, our grammar may produce one of three strings:
A string beginning with a 1 (the first production of S), a string beginning with
a 0 followed by a 1 (the second production of S) and the empty string ε (the
final production of S).

The empty string ε has no 0’s and so follows the rules of the language. The
same is true for any string beginning with a 1. The third and final string that
can be generated when n = 1 is 01. This string does contain a 0 and therefore
also satisfies our requirement.

Induction We shall now assume that all derivations of fewer than n steps result in either
a sentence containing no 0’s or a sentence that contains 0’s followed by one or
more 1’s. Such a derivation must have the form

S ⇒ xS
∗⇒ xy. (5)

Since x is derived in fewer than n steps then, by our inductive hypothesis, x must
contain 0’s only if followed a 1; the same is true of y.

Additionally, according to grammar (1), y must be of one of the productions

S → 1S

S → 01S

S → ε.

Each of these productions have already been discussed in our basis; therefore,
y cannot contain a 0 followed by another 0. Additionally, it is required that
adjacent 1’s be permitted after a 0, which is possible by the first production
(as demonstrated in (3)). As such, xy must contain only 0’s followed by one or
more 1’s and our hypothesis has been proved. �

To ensure a thorough understanding of the above proof, it is worth men-
tioning why (5) used both the ⇒ and

∗⇒ derivation symbols. Our basis applies
when n = 1; the inductive hypothesis applies otherwise (when n > 1). As such,
we must have at least one production in (5).
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Now that we have proved that we may only derive sentences from gram-
mar (1) that contain 0’s followed by one or more 1’s, we must now show that
the grammar may be used to derive all such possible strings.

PROOF Any string s of length l consisting of 1’s and 0’s such that any 0 is followed by
at least one 1 is derivable from S.

Basis A string of length 0 (l = 0) must be ε, which is derivable from S in one step.

Induction Assume that any string s of a length less than l is derivable from S. Such a
string must have the form xy, y ∈ {1, 01, ε}—that is, we can consider s to be
the concatenation of y with a previously derived string. Since the length of x is
clearly less than l, it must by derivable from S by our inductive hypothesis.
Furthermore, xy must have a derivation of the form

S
+⇒ x S ⇒ x y, (6)

thereby proving that s is derivable from S. �

The derivation (6) may seem to be too abstract to be useful; since this is
our first proof, it is worth clarifying why it does in fact complete the proof. We
first showed that any string of the language of 0’s and 1’s that we have been
studying can be described as the concatenation of a smaller such string with 0,
01 or ε (which completes the string). This string, as we stated, has the form xy.
Therefore, we must show that S supports concatenation—(6) demonstrates this
with x fairly abstractly, since it does not matter what exactly x is. From the
productions of S in grammar (1), it is understood that x can be any string of
terminals (that is—any derivation) leading up to that point in the derivation (6).

We must now show that the remaining part of xy—that is, y—is derivable.
The only non-terminal remaining after x is S. We have defined y to be any string
of terminals in the set {0, 01, ε}. Clearly, each of these strings are derivable
from S. Therefore, we can replace S in (6) with y, indicating that this is a
valid derivation given our definition of y; it is up to the reader of the proof to
make this connection. Note that, while the domain of y happens to be every
production of S, this is not necessary for the proof—that is the subject of the
first proof.

Before we put this exercise to rest (indeed, we completed the exercise require-
ment in the first paragraph following the exercise definition), it is also worth
noting that this grammar may also be accepted by a finite automata (and con-
sequently, a regular expression); this is demonstrated by Figure 1. It should be
noted that this is not the case with all of the exercises that follow. �

The above example was fairly simple, yet resulted in a realitively lengthy
discourse far past what was required by the text; the reader can expect such a
discussion to continue for all examples that follow.

Exercise 4.2.3b The set of all strings of 0’s and 1’s that are palindromes; that is, the string reads
the same backward as forward.
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ε

Figure 1: An NFA corresponding to the extended regular expression
(
0?1+

)∗
describing grammar (1).

As the exercise stated, a palindrome is a string that reads the same in both
directions; let us consider some examples before attempting to construct a gram-
mar. The following list of strings are all palindromes, one per line:1

1 00 1
1100 11 0011
010 1 010

0

(7)

The above palindromes have been laid out so that their symmetry is appar-
ent. At first glance, one can imagine constructing a palindrome out of pairs of
characters, like the second row of (7):

11
1 11 1
11 00 11
110 00 011
1100 11 0011

(8)

In this case, each palindrome would always have an even number of characters.
However, it is important to note the bottom two palindromes of (7), which have
an odd number of characters:

00
0 11 0

01 00 10
010 1 010

(9)

Given this evaluation and the understanding that 2n is always even for some
positive integer n, it would be accurate to recursively construct a palindrome
from the edges inward in pairs. Once we reach the center, we may end with ε
if we wish to have an even (2n) number of characters, or otherwise may add a
single character to create a palindrome containing an odd (2n + 1) number of
characters.

1An example of an English palindrome is “Mr. Owl ate my metal worm” (discarding
punctuation and capitalization.)
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S → 0 S 0 | 1 S 1 |M
M → 0 | 1 | ε

(10)

In grammar (10) above, we define out start non-terminal S with produc-
tions for the outer pairs. The non-terminal M represents the acceptable inner
(“middle”) characters, which determines if the length of the palindrome is even
(if ε is used) or odd (0 or 1). We will leave demonstrations of such derivations
to the proof.

To prove that grammar S is the proper grammar for all palindromes, we must
again prove two things: That language L(S) can produce only palindromes of 0’s
and 1’s and that all such palindromes can be derived from S. The difference
between these two descriptions may be subtle for such a simple grammar, but
the distinction is important to ensure that L(S) represents nothing more and
nothing less than a language that may be used for such palindromes.

As before, the proofs will be inductive—the first proof on the number of
steps n of a derivation of S and the second on the length l of the palindrome s.
Our alphabet Σ is once again {0, 1}.

PROOF The only strings derivable from grammar S are palindromes consisting of 0’s
and 1’s.

Basis The basis is n = 2, which is the fewest number of steps from which a string may
be derived from S.2 Such a derivation must be of the form

S ⇒M ⇒ x,

where x is 0, 1, or ε. In the latter case, the derived string is clearly a palindrome
of length zero. In the case of 0 or 1, the length of the string is one, which must
be a palindrome.

Induction Now assume that every string derived in less than n steps is a palindrome. Such
a derivation must be of the form

S ⇒ x S x
∗⇒ x y x.

That is, the string x appears on both the left and right of y. Since the derivation
of y from S takes fewer than n steps—specifically, n − 1 steps—y must be
a palindrome by our inductive hypothesis. Because x is added to both the
beginning and end of y, then any string derived in n steps must be a palindrome.
�

Let us further demonstrate the above proof by deriving (8) from S:3

S ⇒ 1 S 1⇒ 1 1 S 1 1⇒ · · · +⇒ 1 1 0 0 1 ε 1 0 0 1 1 (11)

2n = 1 steps cannot result in a string consisting only of nonterminals, as it would result in
0S0, 1S1 or M .

3The dots were added so as not to confuse the reader as to what was going on; the symbol
+⇒

is sufficient and therefore the dots will be omitted in the future.
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and additionally (9):

S ⇒ 0 S 0⇒ 0 1 S 1 0⇒ 0 1 0 S 0 1 0⇒ 0 1 0 1 0 1 0. (12)

The induction step works by recognizing the basis as the middle of the string
(nonterminal M in grammar (10))—ε for palindromes of an even length and

the dn/2eth character for those of an odd length (1 in the case of the latter
derivation). Call this string b. We know that b is a palindrome, as explained in
the proof above. For our inductive step, we recognize that, for each step n, we
add two characters—one to the beginning and one to the end—to the result of
step n − 1. As such, since the derivation of n − 1 steps must be a palindrome,
the derivation in n steps must also be—it is not possible to derive anything but
a palindrome from M and S maintains this designation.

For completeness, we must now show that all possible palindromes of the
alphabet Σ can be derived from S.

PROOF Every palindrome consisting of 0’s and 1’s is derivable from S.

Basis If the string s is of length l ≤ 1, then it must be ε, 0 or 1, all of which are
palindromes derivable by M .

Induction Observe that any palindrome of length l > 1 must contain the same character at
positions 1 and l.4 Assume that each string with a length less than l is derivable
from S. Since s is a palindrome, then it must have the form xyx, x ∈ Σ, where
y is also a palindrome. Since y has a length l− 2 < l, then it must be derivable
from S by the inductive hypothesis. The palindrome s must therefore have a
derivation of the form

S ⇒ x S x
∗⇒ x y x,

which thus proves that s is derivable from S. �

It is also worth noting that, unlike the first exercise, we cannot represent a
palindrome as a finite automaton (and therefore cannot represent it as a regular
expression). Let us prove this assertion.

PROOF S cannot be represented by any finite automata. Specifically, a finite automaton
representing S may accept all strings that are palindromes of the alphabet Σ,
but such an automaton must also accept strings that are not palindromes. We
shall prove this statement by contradiction.

Contradiction Given the alphabet Σ, a palindrome may contain any character from Σ at any
arbitrary position n and may be of length l ≥ 0. As such, we must be able to
represent this automaton by the regular expression (0|1)

∗
, whose correspond-

ing minimum-state DFA is shown in Figure 2. However, it is also necessary
that characters cn and cl−n+1 be the same symbol in Σ—a requirement that
minimum-state DFA of Figure 2 cannot guarantee.

Consider that the only way for a finite automata to maintain a history of
states is to have a state to represent each unique history. However, to accept a

41-indexed for notational convenience.
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1

0

Figure 2: The minimum-state DFA for the regular expression (0|1)
∗
.

1start 2 x n− 1 n
α

ε

β

ε

β

α

β α

Figure 3: An NFA with a finite set of states must at some point transition to a
previous or identical state in order to accept input of any length. Σ = {α, β}.

string of any length, we would need an automaton containing a potentially infi-
nite number of states, which is not finite (and therefore not a finite automaton).
Therefore, it is not possible to represent the history of every possible palindrome
using a finite set of states.

Given this, it must stand that a finite automaton must at some point contain
a state that transitions to a previous or current state, such as the NFA in
Figure 3. Since the history of the string is “stored” purely in the possible states
leading up to the current state, this transition t equates to a loss of “memory”,
without which the right-hand portion of the palindrome cannot be properly
matched. Furthermore, since each position n may contain any character in Σ,
and since the transition t can only yield a set of future states with a limited
(finite) precision, each of these future states must be redundant. Since each NFA
can be represented by an equivalent DFA and each DFA for some grammar has
a single common minimum-state DFA, any portion of a finite automaton that
can accept a palindrome of any length must be equivalent to Figure 2 (such as
state x in Figure 3). We are therefore left to conclude that no finite automata
can accept a palindrome of arbitrary length without accepting every string that
is a combination of each character in Σ. �

To provide further clarification—any finite automata that transitions to a
previous state, since it looses a portion of its history, can no longer accurately
determine the states leading up to the final state. That is, consider the string
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10101 and consider that the first three characters of this string can be repre-
sented by the states {a, b, a}. At this point, we can no longer be certain of what
the string may end with, because we have lost any sense of nesting/recursion.
Therefore, the states leading to the final state are forced to accept any character
in Σ and therefore must be equivalent to the minimum-state DFA of Figure 2.
As was mentioned by the text, “finite automata cannot count”.

Figure 3 gets around such an issue by transitioning only to current or future
states, which permits a finite amount of nesting (placing the aforementioned
minimum-state DFA x in the middle). However, note a glaring issue—this
automaton does not accept β in the first character position. If it did, then
we would need a second set of states in order to maintain such a history and
know that we should also end with β instead of α. The number of states would
therefore grow very quickly with the level of nesting and the size of Σ (such a
consideration is left to the reader).

We have exhaustively proved that grammar (10) is the correct answer for
this exercise. �

Exercise 4.2.3c The set of all strings of 0’s and 1’s with an equal number of 0’s and 1’s.

To understand how to approach this problem, we shall consider a number
of strings that are derivable from this language. An obvious case is ε, which
contains zero 0’s and zero 1’s. Some additional examples are shown in Figure 4
along with their lengths (denoted by l).

s ε 10 01 1010 1001 011100
l 0 2 2 4 4 6

Figure 4: Examples of strings with an equal number of 0’s and 1’s.

These examples demonstrate a number of important properties. In particu-
lar, the length l of the string s is always even, with the number of 0’s and 1’s
n = l/2. Additionally, the characters of the alphabet Σ may appear in any
order in the string. Therefore, we do not have the luxury of a simple, nested,
recursive implementation as we did with the palindrome exercise (at least not
exclusively).

Let us construct the grammar iteratively, beginning with the simplest case
of ε.

S → ε (13)

The second case—10—is also fairly easy to fit into S:

S → 10 | ε (14)

The third case demonstrates an important case regarding our strings: They
may begin with either a 0 or a 1 and they may also end with either character
(more generally, they may begin or end with any character in Σ). However, we
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cannot simply adjust our grammar to accept either character in both positions—
S must assure that, any time we include a 0 in a production, we also include
a 1 (and vice versa). So far, this is guaranteed by S in grammar (14); to keep
on this path, we must add 01 as yet another special case.

S → 01 | 10 | ε (15)

The fourth case—1010—introduces the need to handle strings of an arbitrary
length. To do this, we must determine at what point we should recurse on S.
Looking at the example, we could derive 1010 as two nested applications of S
if we recurse between the two terminals.

S ⇒ 1 S 0⇒ 1 0 S 1 0⇒ 1 0 ε 1 0
∗⇒ 1 01 0 (16)

Of course, one could also adopt an alternate perspective by considering the
string to be the production of two adjacent non-terminals.

S ⇒ S S ⇒
lm

10 S ⇒
lm

10 10 (17)

Unfortunately, with this information alone, we cannot be certain which of these
productions—if such a choice even matters—should be used in our grammar.
Perhaps we can gain further insight from the remaining examples.

The next example—1001—can be derived in a manner similar to (17), but
not (16); in particular, grammar (15) has no production for the string 00, and
so we cannot construct the string from the outside in. Given that, we can be
certain that an adjacent non-terminal production is needed and so we will add
the production used in (17) to our grammar.

S → 01 | 10 | S S | ε (18)

However, the aforementioned predicament—the absense of a production that
can yield only 00—raises the question of whether or not we can truly derive any
string of equal 1’s and 0’s from the above grammar. Our final example challenges
this. 011100 cannot possibly be represented by S in grammar (18) because this
grammar constructs the string from left-to-right (or right-to-left) in pairs of 0’s
and 1’s. Therefore, the only way to have adjacent 1’s or adjacent 0’s is to
alternate the productions, which makes it impossible to have more than two
adjacent identical characters.

Given this, it seems that both (17) and (16) are necessary; the following
derivation demonstrates this fact (neither can individually be used to derive the
string 011100).

S ⇒ S S ⇒
lm

01 S ⇒
lm

01 1 S 0 ⇒
lm

01 1 1 S 0 0 ⇒
lm

01 1 1 ε 0 0
∗⇒
lm

01 1 10 0

(19)
We thus arrive at grammar (20) below.

S → 0 S 1 | 1 S 0 | S S | ε (20)
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An astute reader may at this point notice that we have created an ambiguity
in our grammar: Recall (16) and (17), which had two possible derivations for
the same string; both of these derivations are now possible in our grammar.
The text defines an ambiguous grammar to be a grammar that contains more
than one leftmost or more than one rightmost derivation for the same sentence.
This is a particularly interesting example of ambiguity, in particular because we
cannot resolve it. Let us consider why.

PROOF Grammar S cannot be disambiguated. We will prove this fact by contradiction.

Contradiction Firstly, recognize that S is ambiguous because there exists some sentence s that
has both of the following derivations in n > 1 steps, where a 6= b:

S ⇒ a S b
+⇒ a x b;

S ⇒ S S ⇒ a S b S
+⇒ a b S

+⇒ a b x.

Suppose to the contrary that there is some way to disambiguate x. There
must then be some terminal c ∈ Σ in x that may be used to perform the disam-
biguation and such a disambiguation would imply a difference in the semantics
of x between the two derivations. However, x = x and so both derivations hold
exactly the same meaning—balanced strings. Furthermore, the productions for
producing balanced strings requires each character in Σ; c therefore must not
exist. �

Fortunately, this ambiguity is not an issue for our grammar because the
multiple derivations are semantically equivalent—we are not arriving at any
different result within the context of this exercise. The sentence 1010 of Figure 4
demonstrates this concept: It does not matter whether we consider the sentence
to be a single balanced string or the concatenation of two balanced strings; we
arrive at the same result regardless with no harm done.5

While the discussion thus far is likely to convince the reader that gram-
mar (20) is correct, we shall conclude with a formal proof of this fact. A proof
that the grammar cannot be represented by any finite automata shall be omit-
ted, in particular because the productions of S have a structure very similar to
the palindrome grammar (10).

PROOF Only sentences composed of balanced 1’s and!0’s may be derived from S.

Basis The basis is n = 1. The only sentence that may be derived in 1 step is ε, which
is clearly balanced (containing zero 0’s and zero 1’s).

Induction Assume that any sentence derived in fewer than n steps is balanced. Now
recognize that any sentence derived in n > 1 steps must make use of one of the
following productions of S:

5Of course, one valid argument is that a more concise and unambiguous grammar will
reduce problems during parsing. However, the parser (like Lex, as described by the text) can
give precedence to the productions that appear earlier in the grammar to resolve this issue.

11



S → 0 S 1;

S → 1 S 0;

S → S S.

Therefore, the smallest sentence that is not ε is either 0x1 or 1x0, both of which
are balanced (each contains one 0 and one 1). Since x is derivable from S in
fewer than n steps, then by our inductive hypothesis, all sentences derivable
from S must be balanced. The last remaining production has the form xy, both
of which are derivable from S in fewer than n steps and thus must be balanced.
Furthermore, since the productions of S produce only 0, 1, or ε, S has the
alphabet Σ = {0, 1} and, consequently, may derive no sentence except for those
containing balanced 0’s and 1’s. �

Having proved that only sentences of balanced 0’s and 1’s are derivable
from S, we must now prove that S can derive all such strings (that is, all such
strings are sentences of S). Such a proof is interesting because our grammar is
more sophisticated than the previous examples.

PROOF All strings of balanced 0’s and 1’s are sentences of S.

Basis The basis is a string of length l = 0, which contains zero 0’s and zero 1’s. This
string must be ε, which is derivable from S.

Induction First, recognize that all balanced strings must have a length l = 2k—that is, l is
always even (as emphasized in Figure 4) and contains k 0’s and k 1’s. Assume
that all strings less than length 2k are derivable from S.

Consider any balanced string s of length 2k. We can consider s to have the
form yz—that is, the concatenation of two balanced strings y and z, both of
which in turn have the form axb, a 6= b where x itself must be balanced (since
a 6= b); alternatively, either y or z may be ε, which therefore implies that the
form yz accepts any balanced string where the first and last characters are not
the same.

We must now show that all such strings can be represented by the form yz.
First, recognize that y = axb may have either the form 0x1 or 1x0; the form
yz then permits up to two adjacent identical characters in Σ; any additional
adjacent identical characters may be derived by x. Consider x = ε; then, clearly
axb is balanced and can be concatenated to form a larger balanced string. If
x 6= ε but x1 = b,6 then we can instead consider an alternative interpretation
y′ = ax1 and x′ = x2 · · ·xnb, and then let y = y′x′ (instead of axb).

We are then left with the case where x1 = a. Such a case allows for an
arbitrarily deep nesting of adjacent identical characters and therefore axb can
be represented by the regular expression a+b+. It is therefore clear that the
form yz is able to describe any string of balanced characters in the alphabet
Σ = {0, 1}. Such a form must have the derivation

6xn denotes the nth character of x.
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S ⇒ S S
∗⇒
lm

xy.

Since this is a leftmost derivation, y is either a balanced string or ε. In the
former case, it is obvious that both x and y are of a length less than 2k and are
therefore derivable from S by our inductive hypothesis. Otherwise, y = ε and
the length of x is precisely 2k and we must consider the form axb; x is clearly of
a length of less than 2k and is therefore balanced by our inductive hypothesis.
Furthermore, it must have a derivation of the form

S ⇒ a S b
∗⇒ a x b,

thereby proving that axb is derivable from S. �

This proof was considerably more involved than our previous ones and is
an excellent segue into proving more sophisticated grammars. Of course, the
reader can surely see the challenges that might arise from attempting to prove
much more complicated grammars. �

4 License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License—you are free to use, share, and modify it to suit your
needs, provided that you give proper attribution and license derivative works
under similar terms. For more information, see:

https://creativecommons.org/licenses/by-sa/4.0/.
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