1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
<?xml version="1.0"?>
<!--
Dependency graph
Copyright (C) 2016 LoVullo Associates, Inc.
This file is part of TAME.
TAME is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.
-->
<stylesheet version="2.0"
xmlns="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:f="http://mikegerwitz.com/hoxsl/apply"
xmlns:graph="http://www.lovullo.com/tame/graph"
xmlns:preproc="http://www.lovullo.com/rater/preproc">
<import href="../hoxsl/src/apply.xsl" />
<!--
@node Dependency Graph
@section Dependency Graph
The dependency graph is a directed graph consisting of
every known symbol,
post-expansion (@pxref{Macro Expansion}).
Cycles are produced only by function recursion and otherwise cause an
error, so the graph is studied as a DAG (directed acyclic graph)
with few exceptions.
Vertices in the dependency graph are represented by
@code{preproc:sym-dep} nodes,
and edges by child @code{preproc:sym-ref} nodes.
Graphs are represented by @code{preproc:sym-deps}.
The graph of each package is considered to be a subgraph of the
entire dependency graph for a particular system.@c
@footnote{The node names are for compatibility with legacy systems
and may change in the future; always use the graph API, and only
use the node QNames for type checks.}
-->
<!--
Retrieve dependenices for @var{$symbol} on the @var{$graph},
using the lookup function @var{$lookup} to resolve external
subgraphs.
@var{$lookup} will be used only if the symbol cannot be
found in @var{$graph},
in which case the result of @var{$lookup} will used used in a
recursive call as the new @var{$graph}.
From a graph perspective,
the dependencies are edges on the @var{$symbol} vertex.
-->
<function name="graph:dep-lookup" as="element( preproc:sym-dep )?">
<param name="symbol" as="element( preproc:sym )" />
<param name="graph" as="element( preproc:sym-deps )" />
<param name="lookup" />
<variable name="deps" as="element( preproc:sym-dep )?"
select="$graph/preproc:sym-dep
[ @name = $symbol/@name ]" />
<sequence select="if ( exists( $deps ) ) then
$deps
else if ( $lookup ) then
graph:dep-lookup( $symbol,
f:apply( $lookup, $symbol ),
$lookup )
else
()" />
</function>
<!--
Produce a new graph that is the transpose of
@var{$graph}@mdash{}that is,
the graph @var{$graph} with the direction of all of its edges
reversed.
This is useful for processing what symbols are @emph{used by} other
symbols.
For example:
@float Figure, fig:reverse-graph
@verbatim
G: A->B->C->E
\
`->D
G': A<-B<-C<-E
^
`D
@end verbatim
@caption{G' is the transpose of G}
@end float
Edge attributes (@code{preproc:sym-ref/@@*)} will be set to the
union of all attributes on all edges of the same @code{@@name} in
@code{$graph}.
@emph{If edge attributes do not share the same value,
the behavior is undefined.}
-->
<function name="graph:reverse" as="element( preproc:sym-deps )">
<param name="graph" as="element( preproc:sym-deps )" />
<variable name="reversed" as="element( preproc:sym-dep )*">
<for-each-group select="$graph//preproc:sym-ref"
group-by="@name">
<preproc:sym-dep name="{@name}">
<for-each select="current-group()/ancestor::preproc:sym-dep">
<preproc:sym-ref>
<sequence select="current-group()/@*" />
<!-- keep our name (overrides the above) -->
<attribute name="name" select="@name" />
</preproc:sym-ref>
</for-each>
</preproc:sym-dep>
</for-each-group>
</variable>
<preproc:sym-deps>
<!-- vertices in $graph with no dependencies will not be in
$reversed -->
<for-each select="$graph/preproc:sym-dep[ not(
@name = $reversed/preproc:sym-ref/@name ) ]">
<preproc:sym-dep name="{@name}" />
</for-each>
<sequence select="$reversed" />
</preproc:sym-deps>
</function>
<!--
Merge sequence of graphs @var{$graphs} into a single graph by taking
the union of all vertices and edges.
Directionality will be preserved.
Edge attributes (@code{preproc:sym-ref/@@*)} will be set to the
union of all attributes on all edges of the same @code{@@name}.
@emph{If edge attributes do not share the same value,
the behavior is undefined.}
For example:
@float Figure, fig:union-graph
@verbatim
G₁: A->B->C
G₂: C->A
G₃: B->C->D
G∪: A->B->C->D
^____/
@end verbatim
@caption{(G₁ ∪ G₂ ∪ G₃)}
@end float
-->
<function name="graph:union" as="element( preproc:sym-deps )*">
<param name="graphs" as="element( preproc:sym-deps )*" />
<preproc:sym-deps>
<for-each-group select="$graphs/preproc:sym-dep"
group-by="@name">
<preproc:sym-dep name="{@name}">
<for-each-group select="current-group()/preproc:sym-ref"
group-by="@name">
<preproc:sym-ref>
<sequence select="current-group()/@*" />
<!-- keep our name (overrides the above) -->
<attribute name="name" select="@name" />
</preproc:sym-ref>
</for-each-group>
</preproc:sym-dep>
</for-each-group>
</preproc:sym-deps>
</function>
</stylesheet>
|